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ABSTRACT As a kind of popular smart materials, shape memory polymers (SMPs) have a
great potential for applications in deployable aerospace structures and other engineering struc-
tures. However, the vibration analysis of shape memory polymer structures, which would play
an important role in engineering, has not gained much attention. In this study, we propose a
dynamic model and establish the governing equations for characterizing the dynamic behavior
of a shape memory polymer membrane subjected to time-dependent forces. The derivation of
governing equations is based on a well-developed constitutive model of SMPs combined with
the Euler–Lagrange equation. With the proposed model, two different loading cases are stud-
ied: the equal-biaxial sinusoidal force and the uniaxial sinusoidal force. To analyze the dynamic
response of a shape memory polymer membrane and find some effective ways to control vibra-
tion, the isothermal amplitude–frequency response, the time-dependent behavior of vibration
and the vibration in a variable temperature process are investigated in the numerical simulation.
It is observed that temperature, mechanical force and heating rate have significant effects on the
dynamic performances of a shape memory polymer membrane. We also investigate the shape
memory behavior of SMP membrane involving the dynamic response. The influence of dynamics
on shape fixation and shape recovery is discussed. These results and discussion may provide
guidance for exploring the vibration and dynamic performances of shape memory polymer in
deployable aerospace structures.

KEY WORDS Shape memory polymer, Nonlinear vibration, Dynamic model, Thermomechani-
cal behavior

1. Introduction
Shape memory polymers (SMPs) are a new type of smart materials [1–3] which have the capability

of returning from a temporary shape to their permanent shape with external stimulus, such as heat
[4], magnetic field [5], light [6], electricity [7] and solution [8]. As a new member of the shape memory
materials, SMPs have unique properties of lightweight, excellent manufacturability, biodegradability,
highly flexible programming, biocompatibility and low cost [9, 10]. With these special characteristics,
the applications and potential uses of SMPs have been developed for various areas including aerospace
[11–13], biomedicine [14, 15] and textile fabric [16, 17].
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Currently, the designs and applications of SMPs in aerospace engineering are mainly focused on
deployable aerospace structures such as flexible solar panels. SMPs’ lightweight and large recoverable
deformation permit important potential applications in flexible solar panels [18, 19]. As an important
part of the satellites, flexible solar panels continually serve in space environment with small resistance.
The cosmic wind and high-energy particles from environment would cause vibration of the flexible
solar panels. Also, because of the large area, small weight and large flexibility of flexible solar panels
themselves, vibration of the system could be one of the key factors influencing the normal operation
for satellites. Coupled with the special nature of SMP materials, the vibration control of plate-like
aerospace SMP structures becomes technically challenging, bursting out the necessity of vibration
analysis for such SMP structures. Therefore, recently there has been a great deal of studies on the
vibration analysis of space plate structures [20–22]. Although researchers have paid much attention to
the investigation of SMP materials [23–25], it appears that results in the vibration analyses of SMP
structures are insufficient.

In this work, a dynamic model based on a simplified viscoelastic constitutive model [26] and the
Euler–Lagrange equation is developed to predict the dynamic behavior of an SMP membrane. With
the proposed model, we investigate the isothermal amplitude–frequency response, the time-dependent
behavior of vibration and the vibration in a variable temperature process of an SMP membrane under
two different loading cases (equal-biaxial sinusoidal force and uniaxial sinusoidal force), respectively.
Then, the effects of temperature, mechanical force and heating rate on the dynamic performances are
investigated through the discussion of the simulated results.

With the understanding of shape memory behavior and the dynamic performances of SMP mem-
brane, we further study the shape memory behavior of SMP membrane involving the dynamic response.
The influence of dynamics on shape fixation and shape recovery is analyzed.

It should be noted that due to the limitation of the introduced constitutive model, this study is
restricted to small strain. For the soft material SMP, the proposed dynamic model is in an early stage.
Future work is needed to expand this work to finite strain and large rotation behavior.

The paper is organized as follows. In Sect. 2, we first briefly introduce our simplified viscoelastic
constitutive model [26], which agrees well with the experiments, to describe the thermomechanical
behavior of SMP structure. Then, we derive the governing equations for an SMP membrane by the
Euler–Lagrange equation. In Sect. 3, we reproduce the shape memory behavior of SMPs with the
proposed constitutive model. According to the derived governing equations, the numerical simulation
results and discussion of the dynamic system are presented in Sect. 4. In these results and discussion,
we investigate the factors affecting vibration behavior and present some recommendations for vibration
control. In Sect. 5, the shape memory behavior of SMP membrane involving the dynamic response is
investigated. Finally, we draw concluding remarks in Sect. 6.

2. Dynamics Model of an SMP Membrane
2.1. Constitutive Model for Shape Memory Polymers

Before the nonlinear dynamic analysis of SMP structure, a simplified viscoelastic constitutive model
[26] which is adopted to describe the thermomechanical behavior of SMP structure is briefly introduced
here. For a detailed description of this constitutive modeling frame, readers can refer to the reference
of Li et al. [26].

The simplified viscoelastic constitutive model, as shown in Fig. 1, consists of three elements: two
elastic springs and one dashpot. The one-dimensional constitutive equation for the model is given as
follows:

σ +
μ (T )

[E1 (T ) + E2 (T )]
dσ

dt
=

μ (T )
[1 + E1 (T ) /E2 (T )]

dε

dt
+

1
[1/E1 (T ) + 1/E2 (T )]

ε (1)

where E1 (T ) and E2 (T ) are temperature-dependent elastic moduli of the two springs, μ (T ) is apparent
viscosity of the dashpot which also varies with temperature, and σ and ε are, respectively, total stress
and total strain. And ε is given as:

ε = εM + εT (2)

where εM is the mechanical strain, εT = α (T − T0) is the thermal strain, T0 is the reference tempera-
ture, and α is the thermal expansion coefficient.
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Fig. 1. Schematic of simplified three-element model for SMPs

Equation (1) can be generalized to the 3-D case at small strain as follows:

σx + ν̃ (T )
dσx

dt
= λ (T ) [εV − 3α (T − T0)] + 2μ (T ) [εx − α (T − T0)]

+ λ̃ (T )
(

dεV
dt

− 3α
dT

dt

)
+ 2μ̃ (T )

(
dεx

dt
− α

dT

dt

)

σy + ν̃ (T )
dσy

dt
= λ (T ) [εV − 3α (T − T0)] + 2μ (T ) [εy − α (T − T0)]

+ λ̃ (T )
(

dεV
dt

− 3α
dT

dt

)
+ 2μ̃ (T )

(
dεy

dt
− α

dT

dt

)

σz + ν̃ (T )
dσz

dt
= λ (T ) [εV − 3α (T − T0)] + 2μ (T ) [εz − α (T − T0)]

+ λ̃ (T )
(

dεV
dt

− 3α
dT

dt

)
+ 2μ̃ (T )

(
dεz

dt
− α

dT

dt

)

σxy + ν̃ (T )
dσxy

dt
= μ (T ) γxy + μ̃ (T )

dγxy

dt

σyz + ν̃ (T )
dσyz

dt
= μ (T ) γyz + μ̃ (T )

dγyz

dt

σzx + ν̃ (T )
dσzx

dt
= μ (T ) γzx + μ̃ (T )

dγzx

dt
(3)

where εV = εx + εy + εz is the volumetric strain, μ (T ), μ̃ (T ), ν̃ (T ), λ (T ) and λ̃ (T ) are the
temperature-dependent material parameters, which can be obtained from E1 (T ), E2 (T ), μ (T ) and
Poisson’s ratio ν [26].

The relationship between E1 (T ), E2 (T ), μ (T ) and temperature is expressed as:

E = Eg exp
[
aE

(
Tg

T
− 1

)]
(4)

τ = τg exp
[
aτ

(
Tg

T
− 1

)]
(5)

μ = μg exp
[
aμ

(
Tg

T
− 1

)]
(6)
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where Eg, τg and μg are elastic modulus, retardation time and viscosity of material at glass transition
temperature Tg, respectively. They can be obtained from experiments such as the dynamic mechanical
analysis (DMA) testing. aE , aτ and aμ are constant parameters.

2.2. Governing Equations of Motion for an SMP Membrane

To study the dynamic behaviors of plate-like aerospace SMP structures, a simplified square SMP
membrane structure (a typical aerospace structure) is analyzed. The governing equations for a square
SMP membrane subject to a time-dependent force are derived in this subsection.

As illustrated in Fig. 2, the square SMP membrane with dimensions of 2H∗2L∗2L in the reference
state is assumed, and each material point in the SMP membrane is labeled by the material coordinate
(X,Y,Z). In the actuation state, the SMP membrane deforms to 2h∗2l∗12l2, when the forces P1 and
P2 are applied in the x and y directions. Due to the deformation, the material point (X,Y,Z) moves
to a new position with the coordinate (x, y, z). To simplify the problem, the center point of the square
membrane (0, 0, 0) is assumed to be unmoved [27, 28]. Defining the strains as εx = (l1 − L) /L,
εy = (l2 − L) /L and εz = (h − H) /H, the motion of the SMP membrane can be written as:

x = (1 + εx) X, y = (1 + εy) Y, z = (1 + εz) Z (7)

For the thermodynamic system, including the SMP membrane, time-dependent force and temperature
field, the kinetic energy T and the free energy Π obey the Euler–Lagrange equation:

∂�

∂εi
− d

dt

(
∂�

∂ε̇i

)
= 0, � = T − Π (i = 1, 2) (8)

where � is the Lagrange, εi denotes two independent strains, and ε̇i is the rate of change of εi.
According to vibration theory, the kinetic energy T can be expressed as [28]:

T =
∫

Ω

1
2
ρ

(
ẋ2 + ẏ2 + ż2

)
dΩ (9)

where ρ is the density of SMP membrane, Ω is the integration interval, ẋ, and ẏ and ż are the velocities
in three axial directions.

The material of SMP membrane obeys the simplified viscoelastic constitutive model (Fig. 1) as
introduced in Sect. 2.1. Thus, the free energy of the thermodynamic system is the sum of the mechanical
(elastic) energy, the potential energy induced by time-dependent forces, the thermal energy and the
initial free energy of SMP membrane [27–29]:

Π = 8HL2

[
1
2
E1

(
ε21x + ε21y + ε21z

)
+

1
2
E2

(
ε22x + ε22y + ε22z

)
+ ρcd0

(
T − T0 − T log

T

T0

)]

− 2P1L (1 + εx) − 2P2L (1 + εy) + Π0 (10)

Fig. 2. A square membrane of SMP deforms at two states: a in the reference state, there is no force applied to the SMP
membrane; b in the actuation state, the SMP membrane is subject to a time-dependent force
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where ε1x, ε1y and ε1z are strains of spring E1 in three axial directions; ε2x, ε2y and ε2z are strains of
spring E2 in three axial directions; εx and εy are the total strains in directions x and y, respectively;
Π0 is the initial free energy, cd0 is the specific heat, and T0 is the reference temperature.

Considering the SMP as an incompressible material, the Poisson’s ratios of two springs are both
set as 0.5. For spring E1, the principal components of the stresses are given by

σ1x = −p +
2
3
E1ε1x

σ1y = −p +
2
3
E1ε1y

σ1z = −p +
2
3
E1ε1z (11)

where p is an undetermined pressure. For the actuated SMP membrane (Fig. 2b), there is no stress in
direction z, then we have σ1z = 0. The volumetric strain is zero; thus, ε1x + ε1y + ε1z = 0, owing to
the incompressibility of material. Then Eq. (11) can be simplified into:

σ1x =
2
3
E1 (2ε1x + ε1y)

σ1y =
2
3
E1 (2ε1y + ε1x) (12)

where σ1x, σ1y and ε1x, ε1y are stresses and strains of spring E1 in directions xandy, respectively.
Similarly, for spring E2 and dashpot μ, we obtain:

σ2x =
2
3
E2 (2ε2x + ε2y)

σ2y =
2
3
E2 (2ε2y + ε2x) (13)

σμx =
2
3
μ (2ε̇μx + ε̇μy)

σμy =
2
3
μ (2ε̇μy + ε̇μx) (14)

where σ2x, σ2y and σμx, σμy are stresses of spring E2 and dashpot μ, respectively; ε2x and ε2y are
strains of spring E2; ε̇μx and ε̇μy are the rates of change of dashpot’s strains. According to the series
and parallel relations of the three elements, the total stresses and total strains can be expressed as:

σx = σ2x = σ1x + σμx

σy = σ2y = σ1y + σμy (15)
εx = ε2x + ε1x + εT

εy = ε2y + ε1y + εT (16)

where σx and σy are the total stresses in directions x and y, respectively. The strains of spring E1 are
equal to the dashpot’s strains so that εμx = ε1x and εμy = ε1y.

Inserting Eqs. (12–14) into Eqs. (15) and (16), we have:

E2 (2εx − 2ε1x + εy − ε1y) = E1 (2ε1x + ε1y) + μ (2ε̇1x + ε̇1y) + 3E2εT

E2 (2εy − 2ε1y + εx − ε1x) = E1 (2ε1y + ε1x) + μ (2ε̇1y + ε̇1x) + 3E2εT (17)

When the force P varies with time, the dynamic responses of the SMP membrane are complex. The
characteristics of loading model also have a significant impact on the behaviors. To study the complex
nonlinear vibration of the SMP membrane under the time-dependent force, two in-plane loading models,
including the equal-biaxial sinusoidal force (P1 = P2 = P0 sin (2πft)) and the uniaxial sinusoidal force
(P1 = P0 sin (2πft) , P2 = 0), are applied to the SMP membrane, where P0 is the amplitude of the
force and f is the frequency of excitation.

For equal-biaxial force (P1 = P2 = P ), the total strains are εx = εy = εEB, and the strains of spring
E1 are ε1x = ε1y = εeb. From Eq. (17), the relationship between εEB and εeb can be given as:

E2εEB = (E1 + E2) εeb + E2εT + με̇eb (18)
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The kinetic energy of SMP membrane can be obtained from Eq. (9):

T =
8
3
ρL4Hε̇2EB +

4
3
ρL2H3 (2ε̇EB − 3ε̇T)2 (19)

and the free energy is derived from Eq. (10):

Π = 8HL2

[
3E1ε

2
eb + 3E2 (εEB − εeb − εT)2 + ρcd0

(
T − T0 − T log

T

T0

)]

− 4PL (1 + εEB) + Π0 (20)

Substituting Eqs. (19) and (20) into Eq. (8), the governing equation for the equal-biaxial force case is:(
16
3

ρL4H +
32
3

ρL2H3

)
ε̈EB − 16ρL2H3ε̈T

+ 48HL2 ·
[

E1E2

E1 + E2
(εEB − εT)

]
− 4PL = 0 (21)

For uniaxial force (P1 = P, P2 = 0), the total strain in direction x is εx = εUA1 and in direction y is
εy = εUA2, and the strains of spring E1 are ε1x = εua1, ε1y = εua2 = −0.5εua1. Based on the condition
of uniaxial force, Eq. (17) can be simplified as:

E2εUA1 = (E1 + E2) εua1 + 2E2εT + με̇ua1 (22)

Similarly, in Eqs. (19) and (20), the kinetic energy and the free energy under the condition of uniaxial
force are obtained as follows:

T =
4
3
ρL4Hε̇2UA1 +

1
3
ρL4H (ε̇UA1 − 3ε̇T)2 +

1
3
ρL2H3 (2ε̇UA1 − 3ε̇T)2 (23)

Π = 8HL2

{
1
2
E2

[
(εUA1 − εua1 − εT)2 +

(
−1

2
εUA1 +

1
2
εua1 − εT

)2

+
(

1
2
εUA1 − 1

2
εua1 − εT

)2
]

+
3
4
E1ε

2
ua1 + ρcd0

(
T − T0 − T log

T

T0

)}
− 2PL (1 + εUA1) + Π0 (24)

Substituting Eqs. (23) and (24) into Eq. (8), the governing equation for the uniaxial force case is:(
10
3

ρL4H +
2
3
ρL2H3

)
ε̈UA1 − 2

(
ρL4H + ρL2H3

)
ε̈T

+12HL2 ·
[

E1E2

E1 + E2
(εUA1 − εT)

]
− 2PL = 0 (25)

To sum up, the dynamics model of an SMP membrane has been developed by a thermomechanical
constitutive model and the Euler–Lagrange equation. Equations (21) and (25), which govern the evolu-
tion of the time-dependent strains of the specific material structure, are used in the following analysis
to study the dynamic response of an SMP membrane in the equal-biaxial force case and the uniaxial
force case, respectively.

3. Constitutive Model Verification
To verify whether the constitutive model presented in Sect. 2.1 can predict the shape memory

behavior of SMPs, we simulate the thermomechanical tests of an SMP reported by Tobushi et al. [4].
The material parameters of SMP are Eg = 146 MPa, aE = 38.1, τg = 521 s, aτ = 35.4, μg = 14 GPa ·s,
aμ = 44.2, ρ = 1005 kg/m3, Tg = 328 K, and α = 11.6 × 10−5 K−1. There are two typical cases of
shape memory behavior: free recovery circle and constraint recovery circle. Figure 3a, b illustrates the
stress–temperature curves and the strain–temperature curves in free recovery circle. Figure 3c, d shows
the stress–temperature curves and the stress–strain curves in constraint recovery circle. The simulated
results are compared with the experiments and good agreement is observed. Thus, this constitutive
model can capture the key features of SMPs. It is reasonable to use this model in the subsequent
studies.
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Fig. 3. Comparisons between the experiments and the calculated results for shape memory behavior: a the stress–tem-
perature curves in free recovery circle; b the strain–temperature curves in free recovery circle; c the stress–temperature
curves in constraint recovery circle; d the stress–strain curves in constraint recovery circle

4. Dynamic Response of SMP Membrane
As shown in Fig. 3a, b, a typical shape memory cycle can be divided into four processes. In process

1© (loading), the SMP specimen is pre-deformed from the original shape to a pre-deformation state.
Then the specimen is cooled to a lower temperature with the pre-deformation or pre-force maintained
in process 2© (cooling). In process 3© (unloading), the strain- or force-constraint conditions are removed
from the specimen and the SMP can retain a temporary shape. And then the deformed SMP is sent
to the place where it needs to be used. Followed by the last process (heating), the SMP specimen
is reheated to a high temperature and recovered to its original shape. SMP structures will serve in
the recovered shape (the original shape) for a long time, e.g., the expanded solar panels. Thus, it is
necessary to study the dynamic response of SMP in this state.

Subject to a sinusoidal force (P = P0 sin(2πft)), the dynamic behaviors of the SMP membrane
with two different in-plane loading cases (the equal-biaxial sinusoidal force and the uniaxial sinusoidal
force) are investigated in this section. To find the ways to control the vibration of SMP membrane,
for both cases, we explore the effects of temperature, mechanical force and excitation frequency on
the isothermal dynamic response and the influence of heating rate in temperature-change vibration.
We hope that these results and discussion can provide guidance to the exploration in SMPs’ vibration
and vibration control. We assume that the SMP membrane is activated from the reference state; thus,
the initial conditions of Eqs. (21) and (25) are given by εEB = 0, ε̇EB = 0 and εUA1 = 0, ε̇UA1 = 0,
respectively. In this simulation, the size of the membrane is set as L = 0.5 m, H = 0.05 m.
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4.1. Equal-Biaxial Sinusoidal Force

4.1.1. Isothermal Dynamic Response of an SMP Membrane
In this subsection, we try to find out the method of controlling vibration of the SMP membrane

by studying the main factors that influence vibration. Thus, the isothermal dynamic response of an
SMP membrane under the effects of temperature, mechanical force and excitation frequency would be
investigated here. Solving Eq. (21) with the initial conditions εEB = 0 and ε̇EB = 0, we can obtain the
vibration of an SMP membrane under equal-biaxial sinusoidal force.

As a temperature-sensitive material, SMP’s thermomechanical behaviors are different with varying
temperatures. Thus, we plot the amplitudes of total strain εEB as functions of the excitation frequency
at five different temperatures (as shown in Fig. 4a) to study the influence of temperature. Here, we
define the amplitude as half of the difference between the maximal and minimal values of strain.
It is observed that both the vibration amplitude of strain and the resonance frequency (where the
maximum amplitude appears) of the responses vary with temperature. Specifically, for a given constant
P0 = 200 N, as shown in Fig. 4a, the resonance frequency becomes smaller at a higher temperature,
while the maximal amplitude increases when temperature increases. As shown in Fig. 4b, we also plot
the amplitude–frequency response of an SMP membrane for a constant temperature T = 343 K and
three different P0. When the temperature remains constant, the maximal amplitude increases with the
increase of P0, while the resonance frequency barely changes. To further understand these phenomena
in Fig. 4a, we plot the resonance frequency as function of temperature in linear coordinates and semi-
log coordinates, respectively, as shown in Fig. 5. Figure 5a shows that there is no obvious regularity
between resonance frequency and temperature in the linear coordinate diagram. However, resonance
frequency and temperature develop a linear relationship in the semi-log coordinate diagram, due to
the approximate delineation of relationship between elastic modulus and temperature by Eq. (4) [4].
The linear relationship of resonance frequency versus temperature (Fig. 5) can be used to control the
vibration of the SMP membrane. When the working temperature of the SMP membrane is given, the
resonance frequency of the membrane at this temperature can be deduced from Fig. 5. Then, we can
intentionally avoid the resonance frequency to prevent the resonance from happening. Also, when the
frequency of excitation (f) is known, the resonance can be avoided by controlling the temperature of
SMP membrane.

To study the effect of excitation frequency on the isothermal dynamic response, the time-dependent
behaviors of vibration at different temperatures are illustrated in Fig. 6. For each temperature, three
levels of excitation frequencies, i.e., the resonant frequency (blue curves), half of the resonant frequency
(red curves) and double of the resonant frequency (black curves), are chosen. It can be seen that the

Fig. 4. Isothermal amplitude–frequency response of an SMP membrane under equal-biaxial sinusoidal force: a for a
constant P0 = 200 N and five different temperatures; b for a constant temperature T = 343 K and three different P0
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Fig. 5. Resonance frequency–temperature curve: a in linear coordinates; b in semi-log coordinates

strongest vibration of SMP system occurs when the frequency of excitation is around the resonant
frequency. At half of the resonant frequency and double of the resonant frequency, the deformations of
εEB are both very small. Furthermore, from the local enlarged drawings in Fig. 6, we can find that the
amplitudes of red curves are always bigger than those of black curves. This is because the loading rates
can affect the nominal elastic modulus of this viscoelastic material. At a higher excitation frequency,
the nominal elastic modulus is larger and the deformations of εEB would be smaller.

4.1.2. Vibration of an SMP Membrane in Temperature-Changing Process: Influence of the Heating
Rate

The dynamic behaviors of the SMP membrane shown in Figs. 4, 5 and 6 are all for isothermal
vibration cases, because the SMP applications commonly work at certain temperatures. However, the
responses of SMP structures are often accompanied by a temperature-changing process. It is imperative
to study the vibration of SMP membrane in a variable temperature process. In the following examples,
an equal-biaxial sinusoidal force is applied to the SMP membrane at 313 K firstly. And then, we keep
the excitation and heat the SMP membrane from 313 to 343 K with a heating rate of 0.0667 K/s
[4]. Figure 7 demonstrates the oscillation of εEB during heating under different excitation frequencies.
During the heating process, resonance occurs (the oscillation amplitude increases dramatically) in
the vicinity of a certain temperature (we call it a resonant-sensitive temperature). However, as the
temperature continues to rise, the oscillation amplitude decreases rapidly and resonance disappears.
From Fig. 5, we can find that the three excitation frequencies of 165.6 HZ, 154.6 HZ and 144.7 HZ
correspond to the resonance frequencies of SMP membrane at 323 K, 328 K and 333 K, respectively.
Figure 7 also shows that the temperatures where the resonance occurs are near 323 K, 328 K and
333 K, which are consistent with the results of Fig. 5. In addition, at the same excitation frequency,
the maximum amplitudes in this heating process are smaller than those in the isothermal process
(Fig. 6). The reason might be that as the heating process is fast, the vibration has not reached the
resonant value when the temperature passes the resonant-sensitive temperature. It can be deduced
that the vibration of SMP membrane in a heating process is related to the heating rate.

Therefore, we would consider another two heating processes with higher heating rates. Figures 8 and
9 plot the oscillation of εEB during heating with the heating rates of 0.3335 and 0.667 K/s, respectively.
As is shown, when the heating rate increases, the maximum values for amplitude become smaller, while
the temperatures where resonance occurs barely change. That is to say, in the temperature-changing
process, the heating rate affects the maximum amplitude instead of the temperature where resonance
occurs. This phenomenon suggests another idea to control the vibration of the SMP membrane. When
the frequency of excitation is known, we can heat the SMP membrane rapidly until near the resonant-
sensitive temperature, and the maximum amplitude could be much smaller.
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Fig. 6. Time-dependent behaviors of vibration at different temperatures. For each temperature, three levels of excitation
frequencies, i.e., the resonant frequency (blue curves), half of the resonant frequency (red curves) and double of the
resonant frequency (black curves), are chosen: a T=313 K and three excitation frequencies are 191 HZ, 95.5 HZ and
382 HZ, respectively; b T=328 K and three excitation frequencies are 154.6 HZ, 77.3 HZ and 309.2 HZ, respectively; c
T=343 K and three excitation frequencies are 127.6 HZ, 63.8 HZ and 255.2 HZ, respectively

4.2. Uniaxial Sinusoidal Force

4.2.1. Isothermal Dynamic Response of an SMP Membrane
The isothermal dynamic response of an SMP membrane under the effects of temperature, mechanical

force and excitation frequency is studied for the uniaxial sinusoidal force case here.
The isothermal amplitude–frequency response is shown in Fig. 10. From Fig. 10a, it can be seen that

when P0 = 200 N is maintained and temperature decreases from 343 to 313 K, the value of amplitude
peak decreases, and the resonance frequency becomes bigger. The amplitude reaches a maximum peak
value of 6.92 at 81.4 HZ for 343 K and a smaller peak value of 2.84 at 121.8 HZ for 313 K. Compared
with the condition of equal-biaxial sinusoidal force, at the same temperature, the maximal amplitude
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Fig. 7. The oscillation of εEB during heating (at the heating rate of 0.0667 K/s) under different excitation frequencies:
a f=165.6 HZ; b f=154.6 HZ; c f=144.7 HZ

Fig. 8. The oscillation of εEB during heating (at the heating rate of 0.3335 K/s) under different excitation frequencies:
a f=165.6 HZ; b f=154.6 HZ; c f=144.7 HZ

Fig. 9. The oscillation of εEB during heating (at the heating rate of 0.667 K/s) under different excitation frequencies: a
f=165.6 HZ; b f=154.6 HZ; c f=144.7 HZ

of SMP membrane under uniaxial sinusoidal force increases and the resonance frequency is smaller.
We also compare the amplitude–frequency response under uniaxial sinusoidal force for a constant
temperature T = 343 K and three different P0 in Fig. 10b. Similar to the responses of SMP membrane
under equal-biaxial sinusoidal force, the maximal amplitude increases with the increase of P0, while
the resonance frequency barely changes. Furthermore, we also plot the relationship between resonance
frequency and temperature of SMP membrane under uniaxial sinusoidal force in Fig. 11, which is useful
to control the vibration of the SMP membrane.
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Fig. 10. Isothermal amplitude–frequency response of an SMP membrane under uniaxial sinusoidal force: a for a constant
force P0 = 200 N and five different temperatures; b for a constant temperature T = 343 K and three different force P0

Fig. 11. Resonance frequency–temperature curve of an SMP membrane under uniaxial sinusoidal force: a in linear
coordinates; b in semi-log coordinates

The time history of vibration of an SMP membrane at five different temperatures is shown in
Fig. 12. Similar to the case under equal-biaxial sinusoidal force, to inquire into the effect of excita-
tion frequency on the isothermal dynamic response, for each temperature, we choose three levels of
excitation frequencies, i.e., the resonant frequency (blue curves), half of the resonant frequency (red
curves) and double of the resonant frequency (black curves). The phenomena are the same as those
under the condition of equal-biaxial sinusoidal force. The biggest vibration of SMP membrane takes
place in the vicinity of the resonant frequency, and the amplitudes of red curves are always bigger than
those of black curves due to the same reason explained before. Thus, it’s necessary for us to control
the vibration of the SMP membrane as well as to avoid the frequency preserve and resonance.

4.2.2. Vibration of an SMP Membrane in Temperature-Changing Process: Influence of the Heating
Rate

The oscillations of εEB under uniaxial sinusoidal force during heating with different heating rates
of 0.0667 K/s, 0.3335 K/s and 0.667 K/s, are depicted in Figs. 13, 14 and 15, respectively. During
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Fig. 12. Time history of vibration under uniaxial sinusoidal force at five different temperatures. For each temperature,
three levels of excitation frequencies, i.e., the resonant frequency (blue curves), half of the resonant frequency (red curves)
and double of the resonant frequency (black curves), are chosen: a T=313 K and three excitation frequencies are 121.8
HZ, 60.9 HZ and 243.6 HZ, respectively; b T=328K and three excitation frequencies are 98.7 HZ, 48.4 HZ and 197.4 HZ,
respectively; c T=343 K and three excitation frequencies are 81.4 HZ, 40.7 HZ and 162.8 HZ, respectively

the heating process, the oscillation amplitude increases dramatically in the vicinity of the resonant-
sensitive temperature. When the heating rate increases from 0.0667 to 0.667 K/s, the amplitude peak
decreases, while the temperatures where resonance occurs barely change. These are consistent with the
results of equal-biaxial sinusoidal force case.

5. Shape Memory Behavior of SMP Membrane Involving the Dynamic Response
We have studied the shape memory behavior of SMP in quasi-static process and the dynamic

behavior of a SMP membrane under time-dependent forces in Sects. 3 and 4. However, in the quasi-
static shape memory cycle process, there may be some small disturbances or dynamic loads in static
loading. Thus, the shape memory behavior of SMP membrane involving the dynamic response should
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Fig. 13. The oscillation of εEB during heating (at the heating rate of 0.0667 K/s) under uniaxial sinusoidal force with
different excitation frequencies: a f=105.6 HZ; b f=98.7 HZ; c f=92.4 HZ

Fig. 14. The oscillation of εEB during heating (at the heating rate of 0.3335 K/s) under uniaxial sinusoidal force with

different excitation frequencies: a f=105.6 HZ; b f=98.7 HZ; c f=92.4 HZ

Fig. 15. The oscillation of εEB during heating (at the heating rate of 0.667 K/s) under uniaxial sinusoidal force with
different excitation frequencies: a f=105.6 HZ; b f=98.7 HZ; c f=92.4 HZ

be researched. In this section, we would investigate the influence of dynamics on shape fixation and
shape recovery, respectively.

5.1. The Influence of Dynamics on Shape Fixation

In the following examples, the SMP membrane is pre-stretched to 5% under an equal-biaxial force
at 343 K firstly. Then, the material is cooled to 313 K. In regular shape fixing process, the strain can
be stored under the pre-force maintained. To investigate the dynamic response of the SMP membrane
in shape fixing process, during the cooling process, a sinusoidal force P = Ps + Pd sin (2πft) is applied
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Fig. 16. Strain–temperature curves of the SMP membrane for a given Pd = 2000 N and different excitation frequencies
in the cooling process: a f = 0 HZ; b f = 50 HZ; c f = 100 HZ

here. Ps is the static force, which is equal to the pre-force. Pd is the amplitude of dynamic force. f is
excitation frequency.

For a given constant Pd = 2000 N, the simulated strain–temperature curves of the dynamic response
for the SMP membrane with different excitation frequencies in shape fixing process are shown in Fig. 16.
In order to compare the dynamic response and quasi-static shape fixing process, the regular quasi-static
shape fixing process (Pd = 0 N) is also illustrated in Fig. 16. When f = 0 HZ, the force P = Ps + Pd

is static. It can be seen from Fig. 16a that in the static loading cases, the strain–temperature curves
of Pd = 0 N and Pd = 2000 N are almost coincident. That is to say, a small static load Pd has little
effect on the original shape fixing process. However, when f �= 0 HZ, as shown in Fig. 16b, c, the strain
curves have a noticeable oscillation near the original strain–temperature curve. This oscillation occurs
mainly in the early stage of cooling process where the temperature is high and the modulus is low.
When f increases from 50 to 100 HZ, the vibration becomes larger. From Fig. 5, we can see that at
the temperature range of 313–343 K, the resonance frequencies of the SMP membrane are 128–191
HZ. The excitation frequency f = 100 HZ is close to the resonant frequency range; thus, the vibration
of this case is more obvious. Such vibration, especially for the resonance at the special frequency, may
destroy the material during the cooling process. Then, the shape fixing process can’t be completed as
expected. But it can be seen that as long as Pd is not very large and the vibration does not destroy the
material during the cooling process, the freezing strain at the end of cooling is the same. The dynamics
have little influence on final shape fixation.

5.2. The Influence of Dynamics on Shape Recovery

In this subsection, we investigate the influence of dynamics on shape recovery in the shape memory
cycle. The simulated case can be divided into four processes. The initial processes 1© → 2© → 3©
are the same as those in the free recovery cycle (Fig. 3b). They are all quasi-static processes. In the
fourth process, the SMP membrane is reheated to 343 K under an equal-biaxial time-dependent force
P = Pd sin (2πft).

Figure 17 plots the strain–temperature curves of the SMP membrane for a given Pd = 2000 N and
different excitation frequencies in the heating process. To compare the dynamic response and quasi-
static shape recovery process, the regular free heating recovery process (Pd = 0N) is also illustrated
in Fig. 17. As shown in Fig. 17a, when f = 0HZ, the influence of the small static force (P = Pd)
on shape recovery can be neglected. In the heating process, the strain–temperature curve of the case
f = 0 HZ overlaps with the curve in the free heating recovery process. Figure 17b, c shows the effect
of dynamics on shape recovery. When f �= 0 HZ, a noticeable oscillation can be observed. It is similar
to the cooling process, when f increases from 50 HZ to 100 HZ, the vibration becomes larger. The
vibration may cause the SMP membrane to deviate from the original desired shape during the shape
recovery process and the final invalidation of the material.
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Fig. 17. Strain–temperature curves of the SMP membrane for a given Pd = 2000 N and different excitation frequencies
in the heating process: a f = 0 HZ; b f = 50 HZ; c f = 100 HZ

6. Conclusion
Based on a thermomechanical constitutive model and the Euler–Lagrange equation, we establish a

dynamic model to study the dynamic behaviors of an SMP membrane in two different in-plane loading
cases: the equal-biaxial sinusoidal force and the uniaxial sinusoidal force. We find that when the tem-
perature rises, the resonance frequency decreases and the value of amplitude peak increases under an
equal-biaxial sinusoidal force. The relationship curve between resonance frequency and temperature
provides a useful guidance to control the vibration of SMP membrane. Furthermore, we observe that
the time-dependent dynamic response of SMP membrane demonstrates a very strong vibration near
the resonant frequency, which is not obvious at other excitation frequencies. For the case of the SMP
membrane oscillating in a temperature-changing process, the amplitude of oscillation increases dramat-
ically in the vicinity of the resonant-sensitive temperature. However, the oscillation amplitude reduces
to a small value rapidly, as the temperature continues to rise. Heating rate also affects the maximum
amplitude in the temperature-changing process. When the heating rate increases, the amplitude peaks
become smaller, while the resonance temperatures barely change. From this study, the vibration of the
SMP membrane could be controlled by properly regulating the heating rate. When the SMP membrane
is driven by uniaxial sinusoidal force, the results are similar to the ones under equal-biaxial sinusoidal
force, except that the maximal amplitudes are bigger and the resonance frequencies are lower. In the
shape memory behavior of SMP membrane involving the dynamic response, the dynamic response has
little influence on final shape fixation. But the shape recovery would be disturbed by the vibration.
This work would provide a theoretical framework for predicting the dynamic behaviors of an SMP
membrane and controlling the vibration of SMP membrane.
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