
A Novel Fractional Viscoelastic Constitutive Model for Shape Memory

Polymers

Zhouzhou Pan, Zishun Liu

International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of

Aerospace, Xi’an Jiaotong University, Xi’an 710049, China

Correspondence to: Z. Liu (E-mail: ZishunLiu@mail.xjtu.edu.cn)

Received 15 April 2018; revised 8 May 2018; accepted 14 May 2018; published online in Wiley Online Library

DOI: 10.1002/polb.24631

ABSTRACT: Shape memory polymers (SMPs) are a class of

smart materials which can recover from a deformed shape to

their original shape by a certain external stimulus. To predict

the deformation behaviors of SMPs, different constitutive mod-

els have been developed in the last few years. However, most

of the constitutive models need many parameters to be deter-

mined by specific experiments and complex calibration pro-

cesses. This drawback has limited their application in

promoting the development of SMPs. Thus, it is imperative to

develop a new constitutive model which is not only accurate,

but also relatively simple. In our work, a novel fractional visco-

elastic constitutive model coupling with time-temperature

superposition principle is first proposed for SMPs. Then, fre-

quency sweep and temperature sweep experiments are con-

ducted to determine the parameters of the model. Finally, the

shape memory free recovery experiments are carried out to

validate the predictive capability of the developed model. By

comparing the predicted results with experimental data, we

find that though our model has only eleven parameters in

total, it could capture the thermomechanical behaviors of

SMPs in very good agreement with experimental results. We

hope the proposed new model provide researchers with guide-

lines in designing and optimizing of SMP applications. VC 2018

Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.

2018, 56, 1125–1134
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INTRODUCTION Shape memory polymers (SMPs) are a class
of smart materials that have the ability to fix at a deformed
state and then return to their original shape by a certain
external stimulus, such as temperature, electricity, light, mag-
netic field, and so on. Compared to shape memory alloys and
shape memory ceramics, SMPs have many unique advan-
tages: low density, easily tailored properties, low cost, and
especially large deformation recovery capacity.1–4 These
novel characteristics have put SMPs in the limelight of
research arena for the past three decades with investigations
focusing toward the potential applications of SMPs, for exam-
ple, deployable structures, biomedical devices, smart textiles,
and self-healing composite systems.5–9

Shape memory recovery triggered by temperature is known
as thermally induced shape memory effect. The typical ther-
momechanical circle of thermally induced SMPs can be
described as: deform the SMP under external forces at a
high temperature; decrease the temperature while maintain-
ing the deformed shape; remove the external forces; reheat
the SMP and it recovers to the original shape.10,11

Many constitutive models have been developed to describe
and predict the thermomechanical behaviors of SMPs. Typi-
cally these models could be classified as two categories: phe-
nomenological models and rheological models.12–15 The
phenomenological model based on the phase translation
approach was first introduced by Liu et al.,16 who considered
the epoxy-based SMPs was a mixture of frozen phase and
active phase, and the volume fractions of the two phases
were changed according to the temperature. Under these
considerations, they developed a constitutive model which
could effectively predict the thermomechanical behavior of
the SMP under small strains. The two phase concept was
gradually adopted by many researchers to develop new mod-
els to improve the predictive capability for the large strain
cases. For example, Chen and Lagoudas9 developed a model
for large deformation which combined the phase concept
and neo-Hookean rubber elasticity model. Kim et al.17 added
another phase (hard phase) to the two phase model to
describe the behavior of shape memory polyurethanes under
large strains. The rheological model is based on the inherent
viscoelasticity of SMPs and the early models were proposed
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by Tobushi et al.,18 Lin and Chen19 by using linear rheology
element (spring elements and dashpot elements). One major
shortcoming of these models is that they usually could pre-
dict just qualitatively, but not quantitatively. To describe the
thermomechanical behavior accurately, researchers improved
the simple viscoelastic model by introducing more linear or
nonlinear elements.20 Nguyen et al.21 presented a new con-
stitutive model by incorporating the nonlinear Adam–Gibbs
model of structural relaxation and a modified Eyring model
of viscous flow into a continuum finite-deformation thermo-
viscoelastic framework. Westbrook et al.22 applied multi-
branch model (equilibrium branch, glassy nonequilibrium
branch, rubbery nonequilibrium branches) including time-
temperature superposition to predict SME by considering the
complex thermomechanical properties of amorphous SMPs
as the temperature crosses the translation temperature Tg.
Diani et al.12 employed the generalized Maxwell model
including time-temperature superposition to predict the
recovery of the epoxy-based SMP. Li et al.13 proposed a vis-
coelastic model based on multiplicative thermoviscoelasticity
and defined different constitutive structures for above and
below transformation temperature in their model.

Though, both of the above approaches have great signifi-
cance to promote the application of SMPs, there are limita-
tions that make them complicated to be put into practice.
The first type constitutive models fall short of describing the
viscoelastic properties of SMPs due to the lack of consider-
ation of the time dependence effect. For the second type, the
main limitation is that most of the presented models have
many parameters (e.g., more than 23 parameters in the
model of Park et al.,23 31 in the model of Diani et al.,12 42 in
the model of Yu et al.,24 and up to 45 in the model of Srivas-
tava et al.25 that need to be accurately determined through
specific experiments and complex calibration processes.
Therefore, it is imperative to develop a new constitutive
model by considering both the accuracy and the simplicity.

This work aims to develop a fractional viscoelastic constitu-
tive model with fewer parameters. The classical viscoelastic
models, such as Generalized Maxwell and Generalized Kevin-
Voigt, are based on constitutive model equations with differ-
ential operators of integer order, which provide exponential
type relationships between relaxation modulus and time.
However, many polymers show a relaxation behavior of
power-law type. A large number of elements are required to
approximate the relaxation behavior that spans several
orders. This leads to a fact that a large number of material
parameters should be determined from experiments. In con-
trast, fractional order formulations have been found to have
ability to describe complex viscoelastic behavior with less
parameters.26,27 According to the time-temperature superpo-
sition principle, it would require fewer parameters to
approximate the relationships between storage modulus and
temperature by using a fractional viscoelastic model. Owing
to this advantage of the fractional viscoelastic model, signifi-
cant amount of work has been conducted on the prediction
of the deformation property for viscoelastic materials.

However, to the authors’ best knowledge, little research has
been conducted to predict the thermomechanical property of
SMP by using fractional differential models. We could only
find that Fang et al.28 tried to apply the fractional calculus
methods to viscoelastic response of amorphous SMPs, but
they only concentrated on the relaxation properties and the
final step instead of the whole complex thermomechanical
behavior of SMPs. Hence, we will apply the fractional visco-
elastic model to systematically study the thermomechanical
behavior of SMPs. At the same time, experiments are also
conducted to determine the unknown parameters and verify
the accuracy of the presented model.

The paper is organized as follows. The “Experimental” sec-
tion presents the experimental results of the dynamic fre-
quency sweep tests and the dynamic temperature sweep
test. In addition, the coefficient of thermal expansion mea-
surement and shape memory circle of free recovery tests of
the SMP are also presented in this section. In the “The novel
constitutive model” section, we briefly introduce the theory
of fractional calculus and develop a novel fractional visco-
elastic model for SMPs. Then the parameters of the model
for SMPs are determined in the “Parameters determination”
section. The comparisons between the model predictions and
experimental results are presented in the “Results and dis-
cussion” section. The following section draws the main con-
clusions of the paper. Finally, the article is completed by an
Appendix where the implementation procedure of the consti-
tutive model for each step of the free recovery circle is
presented.

EXPERIMENTAL

Materials
The SMP material used in this study is a styrene-based ther-
mosetting polymer, which has potential application in many
fields.29,30 All the materials were purchased from Sigma-
Aldrich and used without any purification. In the synthesis
process, the styrene (analytical reagent), butyl acrylate (ana-
lytical reagent), divinyl-benzene (analytical reagent), and
benzoyl peroxide (analytical reagent) were first mixed with
mass ratio of 65:35:2:2, then the mixture was stirred with a
magnetic stirrer and the mixture was casted into a glass
mould. Finally, it was cured in an oven at 70 8C for 24 h.
After curing, the SMP sample was machined to rectangular
shape with dimension of 20 mm 3 5 mm 3 0.74 mm.

Dynamic Mechanical Analysis
The dynamic mechanical analysis for SMP was performed on
the DMA tester (Q800, TA Instruments, New Castle, DE)
using the tensile mode.31 The glass transition temperature
was tested by a dynamic temperature sweep procedure at 1
Hz, and the result is shown in Figure 1. The translation tem-
perature region ranges from 40 8C to 60 8C and the transla-
tion temperature corresponding to the peak of the lose angle
(tand) curve is about 53.5 8C. The time-temperature depen-
dency of the SMP was determined by using dynamic fre-
quency sweeps for each temperature (stepwise from 30 8C
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to 70 8C with 5 8C increments and the translation tempera-
ture) at the frequencies range of 0.01–100 Hz. The storage
modulus and tan d curves as a function of frequency are
shown in Figure 2.

CTE Measurement
The coefficient of thermal expansion (CTE) was measured by
capturing the strain of SMP specimen under no external
force using the DMA tester. To measure the CTE, a SMP sam-
ple was first heated to 75 8C at the rate of 1 8C/min and
equilibrated at the temperature for 10 min. Then the sample
was cooled to 15 8C at the rate of 1 8C/min. At the mean-
while, the strain during the cooling step was recorded. Fig-
ure 3 shows the thermal strain evolution during cooling
from 75 8C to 15 8C. The CTE a is defined as the slope of the
thermal strain curve.

Shape Memory Circle Test
The whole circle of shape memory test was conducted on
the DMA tester as well. In the first step, the shape memory
rectangular specimen was first deformed to the predefined
strain under a strain rate of 2%/min at 65 8C. Subsequently,
the deformed specimen was cooled to 20 8C at the tempera-
ture dropping rate of 1 8C/min while maintaining the total
strain unchanged. Then the external force was removed and
the temporary (deformed) shape was retained. Finally, the
SMP was reheated to 65 8C at the rate of 2 8C/min. Mean-
while, the temporary shape was recovered to the original
shape. The stress train temperature curves of the SMP at 5%
strain and 10% strain are shown in Figure 4.

THE NOVEL CONSTITUTIVE MODEL

Preliminaries: Fractional Calculus
The theory of fractional calculus deals with integrals and
derivatives of non-integer order. There are different defini-
tions of fractional operators and the detailed information

could be found in the work of Mainardi.32 Among these defi-
nitions, Riemann–Liouville fractional integral operator is the
most commonly used and its definition which is based on

FIGURE 1 The temperature dependent storage modulus and

tan d curves of the polystyrene-based SMP obtained from a

temperature sweep test at 1 8C/min and 1 Hz using DMA

machine. [Color figure can be viewed at wileyonlinelibrary.

com]

FIGURE 2 (a) Storage modulus and (b) tan d as a function of

frequency at varying temperatures from 0.01 Hz to 100 Hz

obtained from frequency sweep tests using DMA machine.

[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Thermal expansion strain as a function of tempera-

ture. [Color figure can be viewed at wileyonlinelibrary.com]
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the Cauchy formula for repeated integration shows as
follows:

Jbf ðtÞ5 1

CðbÞ

ðt
0
ðt2sÞb21f ðsÞds; t > 0;b 2 R1 (1)

whereJb is a fractional integral operator,b is order of the
fractional integral,R1is the set of positive real numbers,f ðsÞ
is an integrand, and CðbÞ is the Gamma function which is
defined by:

C bð Þ5
ð1
0
e2t tb21dt (2)

The derivatives are the inverse operator to integrals and
there are two definitions of the fractional derivative. The
first is defined by Riemann–Liouville as left-inverse to the
fractional integral; the second is defined by Caputo as left-
inverse to the fractional integral. In general, the latter is
more popular in dealing with viscoelasticity because the
Caputo derivative of a constant is zero and the Caputo frac-
tional derivative appears more suitable to be treated by the
Laplace transform technique in that it requires the knowl-
edge of the bounded initial values of the function. Therefore,
we use Caputo derivative in this work and it is defined by:

Dbf ðtÞ5

1

Cðm2bÞ

ðt
0
ðt2sÞm212bf mð ÞðsÞds;m21 < b < m

dm

dtm
f ðtÞ;b5m

8>>><
>>>:

(3)

where Db is a fractional derivative operator, m is a positive
integer.

Transforming the abolve derivation into Lapalace complex
domain, we obtain:

L Dbf ðtÞ
� �

5sb~f ðsÞ2
Xm21

i50

sb212if ið Þð01Þs 2 C (4)

where C is the set of complex numbers.

Fractional Viscoelastic Model
The schematic of the proposed new constitutive model is
shown in Figure 5. In the model, we consider that the effect
of thermal expansion on the thermomechanical behavior of
SMPs is independent on the mechanical behaviors. Therefore,
the total strain of the SMP can be written as the summation
of the mechanical strain EM and the thermal strain ET, that is,

ETotal5EM1ET (5)

For the thermal part, it is defined by:

ET5a T2T0ð Þ (6)

where a is the coefficient of thermal expansion (CTE), T0 is
the reference temperature. T is the present temperature. To
capture the deformation behavior of SMPs, two fractional
Maxwell elements (nonequilibrium branches) and a Hookean
spring (equilibrium branch) are arranged in parallel. Like
generalized Maxwell model (GMM), the present model could
be named as the generalized fractional Maxwell model
(GFMM). In the equilibrium branch, the stress req and strain
Eeq follows the linear elastic principle:

req5EeqEeqðtÞ (7)

where Eeq is the stiffness of the spring in equilibrium
branch. In each fractional Maxwell element (nonequilibrium
branch), it consists of a linear spring and a spring-spot. In
the spring-spot, the stress rss and strain Ess obeys the fol-
lowing rule:

FIGURE 4 Thermomechanical free recovery test at pre-strain of (a) 5% and (b) 10%. (1) Uniaxial tension at 65 8C; (2) cooling the

specimens to 20 8C at the dropping rate of 1 8C/min while keeping the strain unchanged; (3) remove the external force; (4) reheat-

ing the specimen at the heating rate of 2 8C/min. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Schematic of generalized fractional viscoelastic model

for SMPs. [Color figure can be viewed at wileyonlinelibrary.com]
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rss5Esb D
bEssðtÞ
Dtb

;0 < b < 1 (8)

where E is the stiffness of the spring, s is the relaxation
time, and b is a decimal between 0 and 1. Then, the frac-
tional differential equation of each fractional Maxwell ele-
ment can be expressed as:

DbrFM

Dtb
1

1

sb
rFM5E

DbEFM
Dtb

;0 < b < 1 (9)

where rFM and EFM are stress and strain in a fractional Max-
well element, respectively. The explicit stress–strain relation-
ship of the fractional Maxwell element can be solved by
Laplace transform and is given by,

rFMðtÞ5E
ðt
t0

Eb 2
ðt2nÞ

s

� �b
 !

dEFMðnÞ
dn

dn

1Eb 2
t2t0

s

� �b
� �

rFMðt0Þ

(10)

where t0 is the initial time, rFMðt0Þ is the initial stress in the
fractional Maxwell element and Eb is the Mittag-Leffler
function:

EbðxÞ5
X1
n50

xn

Cðbn11Þ (11)

where n belongs to the set of integers. Finally, the governing
equation of the proposed model is:

rMðtÞ5reqðtÞ1
Xm
i51

riðtÞ

5EeqEMðtÞ1
X2
i51

"
Ei

ðt
t0

Eb 2
ðt2nÞ

si

� �b
 !

dEMðnÞ
dn

dn1

Eb 2
t2t0
si

� �b
 !

riðt0Þ
#

(12)

where rM is the total mechanical stress.

As the temperature is varied in the thermomechanical circle
of SMPs, the variation of the time with changing tempera-
tures should be taken into consideration. Thus, time-
temperature superposition principle needs to be coupled
with the fractional viscoelastic constitutive model. For ther-
morheologically simple materials, the shift factor for each
branch follows the same rule, and in each branch the effect
of changing temperature is simply to horizontally shift the
viscoelastic response as a function of frequency,33 that is,

a Tð Þ5 sðTÞ
sðTrÞ

(13)

where s (Tr) is the reference relaxation time at the reference
temperature Tr, and a(T) is the time-temperature shift factor.
The shift factor is commonly used by empirical equations,
among which the Williams–Landel–Ferry (WLF) equation
shown in eq 14 is the most commonly used.

FIGURE 7 Comparisons of the storage modulus and tan d
between model approximations and experiments. [Color figure

can be viewed at wileyonlinelibrary.com]

FIGURE 6 (a) Storage modulus and tan d master curves of the SMP obtained from horizontally shifting the frequency sweep tests

in Figure 2 using a reference temperature of 40 8C; (b) WLF equation approximation of the shift factors. [Color figure can be

viewed at wileyonlinelibrary.com]
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log a Tð Þð Þ5 2c1 T2Trð Þ
c21 T2Trð Þ (14)

where c1 and c2 are material constants that depend on the
reference temperature Tr.

PARAMETERS DETERMINATION

In this study, the reference temperature Tr is selected as 40 8C;
shift factors are obtained by shifting the storage modulus-
frequency curves measured at different temperatures into a
master curve. The master curves are shown in Figure 6(a).
Then, the parameters c1 and c2 in the WLF equation are deter-
mined by fitting the equation with the shift factors. The shift fac-
tors and WLF equation fitting results are shown in Figure 6(b).

To determine the material parameters Eeq, Ei, si, b, the storage
modulus and tan d derived from our fractional viscoelastic
model are employed to fit with the dynamic temperature
sweep test curve at 1 Hz. The complex modulus E* of a frac-
tional Maxwell model as a function of angular frequency x is:

E�ðxÞ5 1

E
1

1

EðixsÞb

 !21

5E
ðixsÞb

11ðixsÞb

5E
ðxsÞ2b

1ðxsÞbcos ðbp=2Þ
11ðxsÞ2b

12ðxsÞbcos ðbp=2Þ

1iE
ðxsÞbsin ðbp=2Þ

11ðxsÞ2b
12ðxsÞbcos ðbp=2Þ

(15)

TABLE 1 Material Parameters

Material Parameters Values Unit

Eeq 0.90 MPa

E1 336.77 MPa

E2 596.56 MPa

s1 0.6065 s

s2 0.0008 s

b 0.793 –

c1 9.91 –

c2 45.23 8C

Tr 40 8C

ar 2.1e-4 8C21

ag 3.2e-5 8C21

FIGURE 8 The comparisons between model predictions and experiments for the whole circle of free recovery at pre-strain of 5%: (a)

stress–strain curves; (b) stress–temperature curves; (c) strain–temperature curves. [Color figure can be viewed at wileyonlinelibrary.com]
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Thus, the temperature dependent storage modulus E0, lose
modulus E00 and the lose angle tan d of the GFMM are:

E0ðx;TÞ5Eeq1

Xm
i51

Ei
ðxsiÞ2b

1ðxsiÞbcos ðbp=2Þ
11ðxsiÞ2b

12ðxsiÞbcos ðbp=2Þ
(16)

where x is equal to 2p and si5aðTÞsiðTrÞ. Then the param-
eters Eeq, Ei, si, b are obtained by fitting with the curves of
storage modulus and lose factor as a function of tempera-
ture. The storage modulus and lose factor curves predicted
by the present model and experiments are shown in Figure
7. The coefficient of thermal expansion for polystyrene is
obtained by calculating the slope of the thermal strain
curve at glassy state and rubber state, respectively. Up to
now, all the parameters of the model are obtained and
listed in Table 1. The parameters will be used later directly
for predicting the thermomechanical properties of the
SMPs.

RESULTS AND DISCUSSION

To show the ability of the proposed model in predicting the
thermomechanical property of SMPs, the experiments of
shape memory circle for polystyrene-based SMPs with differ-
ent pre-strains are conducted to provide for comparison.
During the numerical prediction process, the equations in
the implementation procedures of the constitutive model
part (shown in Appendix) are implemented into the MATLAB
program and all the conditions are set the same with the
experiments in the section of “Experimental.” The parame-
ters used in the constitutive model are shown in Table 1 and
no additional fitting is required in predicting the shape
memory free recovery circle. The comparisons of stress–
strain curves, stress–temperature curves, and strain–temper-
ature curves between model predictions and experiments
are shown in Figures 8 and 9 for 5% pre-strain and 10%
pre-strain, respectively. It shows that the fractional viscoelas-
tic model could predict in good agreement with the experi-
mental observations for different levels of pre-deformation.

FIGURE 9 The comparisons between model predictions and experiments for the whole circle of free recovery at pre-strain of 10%:

(a) stress–strain curves; (b) stress–temperature curves; (c) strain–temperature curves. [Color figure can be viewed at wileyonlineli-

brary.com]

JOURNAL OF
POLYMER SCIENCE WWW.POLYMERPHYSICS.ORG FULL PAPER

JOURNAL OF POLYMER SCIENCE, PART B: POLYMER PHYSICS 2018, 56, 1125–1134 1131

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


To quantitatively describe the shape recovery property, the
shape recovery ratio is defined by the recovered strain over
the fixed strain:34

Rr512
EðTÞ
EðT3Þ

(17)

where E(T3) is the value of strain measured at the start of
the free recovery process. Figure 10(a,b) shows the compari-
son of experimental results with predictions for shape recov-
ery ratio under pre-strain of 5% and 10%. By further
plotting the shape recovery ratio with respect to tempera-
ture for 5% pre-strain and 10% pre-strain in the same
graph, we find that both the experiments shown in Figure
10(c) and the model prediction shown in Figure 10(d) dem-
onstrate that the shape recovery ratio shows almost the
same evolution in spite of the value of the pre-strain for the
polystyrene-based SMP. The same results are also found by

Arrieta et al.35 for an acrylate-based SMP. This finding may
provide guidelines for developing SMP applications.

CONCLUSIONS

Constitutive models for SMPs are fundamental for the devel-
opment of SMP applications. In this paper, a novel fractional
viscoelastic model coupling with the time-temperature
superposition principle is developed for simulating the ther-
momechanical behaviors of SMPs. The frequency sweep
experiments are conducted to determine the parameters c1
and c2 in the WLF equation and the temperature sweep tests
are carried out to identify the material parameters Eeq, Ei, si,
bi. Then the shape memory free recovery experiments for a
polystyrene-based SMP are carried out to validate the predic-
tive capability of the model. Though our model has only
three branches (one equilibrium branch and two nonequilib-
rium branches) and eleven parameters in total, it could

FIGURE 10 The shape recovery ratio with respect to temperature for comparison between: (a) experiments and predictions under

prestrain of 5%; (b) experiments and predictions under prestrain of 10%; (c) experiments under prestrain of 5% and 10%; (d) pre-

dictions under prestrain of 5% and 10%. [Color figure can be viewed at wileyonlinelibrary.com]
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capture the thermomechanical behaviors of SMPs in very
good agreement with experimental results of shape memory
free recovery. It should be noted that both the theoretical
predictions and experimental results demonstrate that the
shape recovery ratio shows almost the same evolution in
spite of the value of the pre-strain.

APPENDIX: IMPLEMENTATION PROCEDURES OF
THE CONSTITUTIVE MODEL

In this part, we present the implementation method to
solve eq 12 for each step of the shape memory circle. Due
to the fact that the whole circle of the shape memory
behavior consists of four different steps, we have to imple-
ment the equation step by step. In the first step, it is a
strain controlled loading process with constant strain rate
_E1 and the initial strain is zero. Thus, eq 12 could be sim-
plified as:

rM tð Þ5Eeq _E1t1 _E1

X2
i51

Ei

ðt
0
Eb 2

ðt2nÞ
si

� �b
 !

dn

" #
: (A1)

Then the temperature is decreasing at the rate of _T 2

while the total strain is maintained. According to eqs 5
and 6, the mechanical strain is increased at a rate of
_E25a _T 2. At thiscondition, the governing equation could be
rewritten as:

rMðtÞ5Eeq _E2 � ðt2t1Þ1
X2
i51

Ei _E2

ðt
t1

Eb 2
ðt2nÞ
siðTÞ

� �b
 !

dn1Eb 2
t2t1
siðTÞ

� �b
 !

riðt1Þ
" #

(A2)

where t1 is the initial time of the second step. Subsequently,
in the third step, the external force is removed instantly and
there is a small springback of strain DEE. To calculate the
DE, we write the total stress in another form:

r5EeqEeq1
X2
i51

EiEei (A3)

where Ee
i denotes the strain of the spring in the nonlinear

branches.
Since the total stress is decreased to zero instantly, we
assume the DE results from the spring. Then the following
equation holds:

05Eeq Eeq2DE
� 	

1
X2
i51

Ei Eei 2DE
� 	

(A4)

The above equation can also be written as:

DE5
EeqEeq1

P2
i51 EiEei

Eeq1
P2

i51 Ei

(A5)

Realizing that the numerator in eq A5 is the total stress r2

just before unloading, thus eq A5 can be further written as:

DE5
r2

Eeq1
P2

i51 Ei

(A6)

Finally, the SMP is reheated to the high temperature without
any constraints and it can recover most of the deformed
strain to its original state. During the process, the total
stress maintains at zero:

05EeqEeq1
X2
i51

EiEei (A7)

In each Fractional Maxwell element, the stress is identical in
the spring and spring-spot elements:

EiEe
i 5Eis

b
i

DbEiðtÞ
Dtb

(A8)

Owing to the parallel arrangement of the equilibrium branch
and nonequilibrium branch, the strain in nonequilibrium
branch is equal to that in the equilibrium branch:

Eeq5Ee
i 1Evi (A9)

where Evi denotes the strain in the spring-spot element.
Substituting eqs A8 and A9 into eq A7, we obtain the system
equations:

E½ � DbEe

Dtb


 �
52

1

a TðtÞð Þ B½ � Eef g (A10)

where Eij5Ej/Eeq1dij, Bij5dij/si, and dij is the Kronecker
Delta. Realizing that the above equations are coupled and
could not be solved individually, we calculate them by using
the diagonalization method. The details can be found in any
linear algebra book.
The above equations are implemented into the MATLAB pro-
gram for predicting the thermomechanical behaviors of
SMPs.
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