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• The prior buckling mode can be al-
tered by modifying columns in lat-
tice structures.

• There exists an effective modifica-
tion region which is numerically
given out.

• Critical buckling condition of pattern
transformation is theoretically ana-
lyzed.

• Our findings and methods are vali-
dated by numerical and experimen-
tal studies.
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a b s t r a c t

The prior buckling modes of conventional square lattice structures are always global buckling other
than local buckling (i.e., pattern transformation). Interestingly, we found that the preferential buckling
mode can be altered to pattern transformation by modifying the sections of the frame in conventional
square lattice structures, and there exists an effective modifying region. In order to predict the pattern
transformation of this kind of modified structures and to determine the corresponding critical buckling
conditions, the theoretical analyses are carried out, and we found that the theoretical results agree well
with numerical simulations and experimental studies. This study provides an effective way to achieve
pattern transformation based on conventional lattice structures. The presented theoretical approach for
predicting critical buckling conditions may shed useful insights on the design and application of lattice
metamaterials.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Metamaterials are engineered multiscale materials whose
equivalent physical properties are governed by their architectures
rather than compositions. The word ‘‘metamaterial’’ was initially
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used within the context of optics [1–6] and electromagnetism [7],
but today refers to all engineered materials to exhibit novel prop-
erties that are not usually found in nature. Mechanical metama-
terials have emerged during the last few years partially due to
the advances in additive manufacturing techniques that enable
the fabrication of complex materials with arbitrary micro-/nano-
architectures [8]. As an exciting paradigm, mechanical metama-
terials give rise to the developments of materials with unprece-
dented or rare mechanical properties that could be utilized to
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create advancedmaterials with novel functionalities [9–11]. These
unusual properties include a very high stiffness to weight ra-
tio [12], negative Poisson’s ratio [13–16], negative stiffness [17],
and negative compressibility under hydrostatic pressure [18].
When artificially and properly designed, mechanical metamateri-
als can enable acoustic [19] or mechanical [20] cloaking, which are
impossible to be observed in conventional materials.

Pattern transformation is a property commonly seen in some
mechanical metamaterials when subjected to uniaxial compres-
sionbeyond a critical value.Many twodimensional or three dimen-
sional metamaterials are designed to achieve this kind of pattern
transformation in recent years [21–28]. These mechanical meta-
materials include periodic cellular structures [29], regular, chiral
and anti-chiral honeycombs [30–32], kirigami geometries [33–35],
periodic minimal surface architectures [36] and so on.

Pattern transformation is caused by local elastic instabilities
and often reversible and repeatable [29]. Along with this local
elastic instability, the periodic lattice metamaterial will undergo
a transformation from gradual and homogeneous deformation to
a totally different pattern with alternating mutually orthogonal
voids. This phenomenon has been observed at macroscales, mi-
croscales or even nanoscales [37–39], and many special properties
appear with pattern transformation, such as negative Poisson’s
ratio and new mechanical behaviors. There are many factors af-
fecting pattern transformation including initial porosity [14], ar-
rangement of holes [40,41], loading condition [42–46], shape [21]
and inclusions [47,48] of the voids, viscoelastic property [49,50]
and combination [22] of the component materials.

Regular honeycombs (or periodic lattice structures) are ad-
vanced low-density materials and have widespread application
for structural protection, energy absorption and as the core of
lightweight sandwich panels [31]. However, the pattern transfor-
mation induced by local instability may not be the prior buckling
mode of conventional periodic lattice structures. For example,
the stress triggers pattern transformation is always higher than
that triggers global buckling for square honeycombs [31,51,52],
which means that global buckling is the prior buckling mode of
conventional square lattice structures. Therefore, if we can realize
pattern transformation in conventional lattice structures, it will
greatly enlarge the application areas of periodic lattice structures.

Excitingly, we find that the prior bucklingmode of conventional
square lattice structures can be altered to be pattern transfor-
mation by modifying the sections of frames. This study aims at
providing an effectiveway to achieve pattern transformation based
on conventional lattice structure and giving out the effective mod-
ification region, exploring themechanical behavior of themodified
metamaterials, and proposing a theoretical method to predict the
critical buckling conditions for pattern transformation.

The article is organized as follows. First, the geometry of mod-
ified lattice metamaterials with stepwise section is presented
in Section 2. Then, the numerical and experimental details are
introduced in Section 3. Next, the results and discussions are
provided in Section 4, including instability analysis results with
phase diagrams of first-order buckling modes, theoretical analy-
sis of critical buckling conditions for pattern transformation, the
results of numerical and experimental studies, and the discussion
about the theoretical prediction and designingmethod. Finally, the
conclusions are presented in Section 5, highlighting the effect of
modification (changing the section width at specific position of
the frame) on the mechanical response of periodic square lattice
structures.

2. Geometries

In this study, we consider a type of modified periodic lattice
metamaterials. As shown in Fig. 1, compared with conventional

square lattice structures, the modified metamaterials are made by
changing the uniform section of frame into stepwise. The struc-
tures in blue dash boxes are the primitive cells, which are the
minimum constitutional repeating units of periodic structures, for
conventional lattice structure (left) and modified lattice structure
(right), respectively.

The geometries of modified lattice structures are governed by
five parameters, which are the size of a primitive cell, the two
widths and the two lengths of the bars with stepwise sections,
respectively. The size of the primitive cell is determined by its side
length l. The stepwise sections are controlled by r1 and r2, which
give respective sectional width to be l− 2r1 and l− 2r2. The length
of the bars with sectional width of l −2r1 and l −2r2 are described
by l1 and l2, respectively. Since l1 + l2 = l/2, there are only four
independent characteristic parameters.

In present study, the characteristic parameters take the follow-
ing values. The size of primitive cells is l = 10 mm, and the length
of the bars with sectional width of l − 2r1 is in the range of 0.1
≤ l1/l ≤ 0.4. Noting that there is a natural constraint of r1 ≥ l2
and r2 > l2, the two sectional width parameters take the value
ranges of l2/l≤ r1/l≤ 0.48 and 0.42≤ r2/l≤ 0.48, respectively. Fig. 2
displays four typical structures that will appear in the modified
lattice structures, and the conventional lattice structure (r1 = r2)
is also on the list as shown in Fig. 2(c).

3. Methods

3.1. Numerical simulations

An infinite periodic structure can be modeled by considering
a suitable representative volume element (RVE) and applying pe-
riodic boundary condition (PBC). The RVE model may consists of
one or more primitive cells which depend on the deformation
patterns. From previous studies, we know that at least 2 × 2
primitive cells should be employed to characterize the pattern
transformation behavior of periodic cellular structures [53]. But
the global buckling of periodic cellular structures does not have
a periodic cell and the buckled patterns vary as the sizes of the
models change. Therefore, the RVE models take 4 × 4 primitive
cells considering the difference between pattern transformation
and global buckling in this paper.

To determine the effect of column sections on the response
of modified periodic lattice structures, numerical simulations are
performed with both 2D plane-strain models and 3D solid models
using the commercial finite element software ABAQUS. The 8-node
biquadratic hybrid plane-strain quadrilateral elements (ABAQUS
element type CPE8H) and 8-node linear brick hybrid solid elements
(ABAQUS element type C3D8H) are used to generate the mesh of
2D models and 3D models respectively, and the mesh density in
2D models is around 196–1760 elements per primitive cell. The
instability analysis is conducted as an eigenvalue problem via the
linear buckle analysis by considering RVE models with PBC. Post-
buckling analysis is conducted in two manners: (1) considering
RVE models with PBC and (2) considering full models. A uniaxial
compression of up to 10% nominal strain is applied to investi-
gate the non-linear post-buckling response. The material used in
numerical simulation is Tango Black Plus, a type of 3D printing
material, and is modeled as nearly incompressible neo-Hookean
solid characterized by K/G = 50 and E = 0.53 MPa.

In the RVEmodel, two reference points (Rx andRy) are defined to
help apply the boundary conditions. Since the location of reference
points makes no difference to the results, Rx and Ry both take the
origin of the coordinate. PBC is applied on the parallel opposite
edges, which can be expressed as follows with the coordinate
system shown in Fig. 2(a),

uij − u∗

ij = Liεij = c iij (1)
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Fig. 1. Schematic of conventional (left) andmodified (right) square lattice structures. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. Typical structures of the modified metamaterials with stepwise sections. (a) r1/l = 0.35, r2/l = 0.45, l1/l = 0.15, (b) r1/l = 0.45, r2/l = 0.48, l1/l = 0.25, (c)
r1/l = r2/l = 0.45, l1/l for all suitable values, i.e., conventional lattice structures with constant section area, (d) r1/l = 0.48, r2/l = 0.45, l1/l = 0.40.

where uij and u∗

ij are the displacements on the opposite bound-
ary surfaces, Li and εij are the length and average strain of the
RVE model, respectively, and c iij represents the displacement of
the reference point Ri. The indices i and j denote the coordinate
directions in the range of x and y. The uniaxial compression load is
then applied by giving a displacement cyyy to Ry in y direction, while
the displacement of Rx in x direction is left free. The displacements
of Ry in x direction and of Rx in y direction are set to be zero to keep
the deformation continuity at the boundaries. To avoid the rigid
motion of the model, the center of the left-bottom primitive cell is
fixed by setting the displacements in the x and y directions to be
zero.

3.2. Experimental details

The modified square lattice metamaterials are fabricated by
printing with a multi-material 3D printer (Object350 Connex3,
Stratasys Inc., USA). The 3D printing material used is Tango Black
Plus, a rubbery material at room temperature, and its Young’s
modulus is measured to be about 0.53MPa by quasi-static uniaxial
tension test. The performance of our 3D printed lattice structures
is tested using quasi-static uniaxial compression, in which the
compressive speed of 1 mm/min (i.e., nominal strain rate about
0.00042/s for our samples) is adopted with a Shimadzu testing
machine (Shimadzu Corp., Kyoto, Japan), and a camera is used
to capture the deformation. The compression process is stopped
at a maximum nominal strain of 0.1 after the occurrence of pat-
tern transformation or global buckling. The nominal stress versus
nominal strain behavior is recorded and compared with numerical
results.

4. Results and discussion

4.1. Instability analysis

Upon application of uniaxial compressive load, a periodic struc-
ture can suddenly change its periodicity due to mechanical insta-
bility, and such instability can be either microscopic or macro-
scopic [24]. Here, the instability of the modified square lattice

structures is investigated via a linear buckling analysis procedure
for all the RVE models mentioned in Section 2. The results of 2D
plane-strain models provide us the phase diagram of the first-
order buckling mode as shown in Fig. 3. The buckling modes
are either pattern transformation (corresponding to solid dots)
or global buckling (corresponding to void dots) for different ge-
ometric parameter combinations and the pattern transformation
region for different l1/l are filled with different colors. The dots on
the blue lines represent the geometric parameter combinations of
modified structures similar as shown in Fig. 2(a) (corresponding to
the natural constraint r1 = l2), the dots on the red lines represent
the geometric parameter combinations of structures with r1 = r2
(i.e., the conventional square lattice structures similar as shown in
Fig. 2(c). The dots in the regions between the red lines and the blue
lines represent the geometric parameter combinations ofmodified
structures similar as shown in Fig. 2(b), and the dots in the regions
on the right of the red lines represent the geometric parameter
combinations of structures similar as shown in Fig. 2(d).

As we can see from Fig. 3, the pattern transformation only
appears in some structures similar to Fig. 2(a) and (b), and the first-
order buckling modes are all global buckling modes for structures
similar to Fig. 2(c) and (d). The region corresponding to global
buckling mode enlarges as the value of l1/l decreases, and no local
buckling mode is observed within our investigation when l1/l =

0.15. So the corresponding distribution of first buckling modes
for modified lattice structures with l1/l = 0.1 is not shown in
Fig. 3. Besides, the red lines are all located in the global buck-
ling region, which is consistent with the fact that the first-order
bucklingmodes of conventional square lattice structures are global
buckling.

It can also be observed that, when l1/l >0.25, i.e., l1 >l2, the val-
ues of r1/l and r2/l have very little effect on the first-order buckling
mode; but when l1/l <0.25, the effect of r1/l and r2/l values is quite
enormous, and the region corresponding to global buckling mode
expands rapidly as l1/l decreases. On the other hand, no pattern
transformation is observed as first-order buckling mode for the
modified metamaterials with l1/l ≤ 0.15 within our research. It is
easy to understand that, when l1 ≪ l2, themodifiedmetamaterials
with stepwise sections are very close to conventional square lattice
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Fig. 3. Phase diagram of the first-order buckling modes for the modified periodic lattice structures with (a) l1/l = 0.4, (b) l1/l = 0.35, (c) l1/l = 0.3, (d) l1/l = 0.25, (e)
l1/l = 0.2 and (f) l1/l = 0.15. The colored areas represent the regions of pattern transformation. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

metamaterials with a sectional width of l − 2r2. Thus, no matter
what the combinations of r1/l and r2/l the modified metamaterials
are, the first-order bucklingmodes can only be global buckling. Be-
sides, as the value of r2/l becomes smaller, the value of r1/l needed
is smaller for pattern transformation as first-order buckling mode,
and the smaller the value of l1/l is, the smaller the value of r1/l
needed. However, note that there is always a region corresponding
to pattern transformation as first-order bucklingmodewhen l1/l≥
0.2, which means that we can achieve pattern transformation by
modifying the sections of conventional square lattice structures.

If we set the value of l1/l as the third axis, superpose all the
graphs in Fig. 3 together, and remove most of the data points, we

can obtain the graph as shown in Fig. 4. The colored region in Fig. 4
displays the effective combinations of r1/l, r2/l and l1/l correspond-
ing to pattern transformation, while the striped region represents
irrational geometric parameter combinations with r1 < l2 and the
rest part corresponds to global buckling. The dash plane represent
the geometric parameter combinations of modified metamaterials
with r1 = r2, i.e., the conventional square lattice structures.

Above findings and Fig. 4 can instruct us how tomodify the sec-
tions of frame to achieve pattern transformation in conventional
square lattice structures. Pattern transformation can be realized
by slimming down the section at the middle of the columns, but
the slimmed area should better not to exceed half length of the
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Fig. 4. Effective geometric parameter combinations for modified metamaterials to
achieve pattern transformation. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) Oblique view and (b) front view of the plate with stepwise sections. (c)
Loading and boundary conditions, (d) Equivalent bending problem, (e) and (f) Free
body diagrams of the bending problem.

column, or the effort in achieving pattern transformation will be
significantly impaired. Similarly, we can achieve the same goal
by widening the sections of the columns at the corners, and the
widened area should better exceed half length of the lattice. Be-
sides, as the r2/l becomes smaller (i.e., the relative section width (l
− 2r2)/l becomes larger), it is more and more difficult to achieve
pattern transformation with this method. Since we concern more
about pattern transformation, the values of r2/l taken in this paper
are not too small.

4.2. Theoretical analysis

In this section, we focus on the theoretical analysis of pat-
tern transformation. The critical buckling conditions are deduced
with the following assumptions. The modified metamaterials are

Fig. 6. (a) Oblique view of the initial geometry and (b) front view of the buckled
geometry for a primitive cell of modified lattice metamaterial.

assumed to be consisting of plates with stepwise sections and
plane-strain deformation problem is considered. Since the buck-
ling occurs at a rather small strain and we are not analyzing the
post-buckling behavior, linear buckling is considered. The compo-
sition of the material is assumed to be linear elastic.

For a plate with stepwise sections in x-direction and infinite
length in z-direction as shown in Fig. 5(a), Fig. 5(b) shows the front
view along z-direction. If the plate is simply supported along two
opposite edges and subjected by two equal and opposite couples
at both hinge joints, the plate will bend as shown in Fig. 5(c). From
the symmetric bending shape, we can see that the rotation angle
at the middle point of the span is zero and the tangent line of the
deflection at this point is horizontal. Thus, the half span of the plate
AC can be treated as a cantilever slab as shown in Fig. 5(d). The
rotation angle at the free end is equal to the rotation angle θ at
the joints, and the relationship between bending moment M0 and
rotation angle θ can be deduced by themethod of sections. The free
body diagrams of Fig. 5(d) are shown in Fig. 5(e) and (f).

According to the equilibrium equations of segment BC and AB,
the internal moment at B isMB = M0, and then the rotation angles
can be obtained to be θ1 = M0l1/D1 and θ2 = M0l2/D2, where D1
and D2 are the bending stiffness and l1 and l2 are the lengths of the
two cantilever slabs, respectively. Thus, the rotation angle θ at the
joints of the simply supported plate can be obtained by summing
the rotation angles θ1 and θ2 as follows,

θ = θ1 + θ2 = M0

(
l1
D1

+
l2
D2

)
. (2)

The bending stiffness can be expressed as

D1 =
Ew1

3

12
(
1 − ν2

) , D2 =
Ew2

3

12
(
1 − ν2

) (3)

where E and ν are the Young’s modulus and Poisson’s ratio of the
plates, andw1 andw2 are the sectional widths (i.e., the thicknesses
of the plates).

As shown in Fig. 6(a), the modified lattice metamaterial with
stepwise sections is symmetrical with respect to xz-plane and yz-
plane, and each member of the framework with rigid joints can
be treated as a plate with elastically restrained ends. The vertical
members of the frames are compressed by a normal force Nx, and
it is assumed that lateral movement of the joints is prevented by
external constraints. When the normal force Nx reaches a critical
value, the vertical plates begin to buckle as indicated in Fig. 6(b).
This buckling is accompanied by the bending of horizontal plates,
and this bending will exert reactive moments to vertical plates at
the joints. Hence, the vertical members can be treated as plates
with elastically built-in ends.
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Themoment of vertical plates can be expressed by the following
equilibrium differential equations,⎧⎪⎪⎨⎪⎪⎩

D1
∂2y1
∂x2

= −Nxy1 + M0, for 0 ≤ x ≤ l1

D2
∂2y2
∂x2

= −Nxy2 + M0, for l1 < x ≤ l/2
(4)

where yi is the deflection and Di is the bending stiffness of the
vertical plates, and the subscript i (i = 1, 2) is employed to
distinguish the parameters corresponding to different sections.M0
is themoment exerted by horizontal plates, which can be obtained
from Eq. (2). Nx = F/b is the internal normal force in x-direction,
and b is the thickness of the modified metamaterial in z-direction.

The general solutions of Eq. (4) are⎧⎪⎪⎨⎪⎪⎩
y1 = A1 sinα1x + B1 cosα1x +

M0

α1
2D1

, α1
2

=
Nx

D1

y2 = A2 sinα2x + B2 cosα2x +
M0

α2
2D2

, α2
2

=
Nx

D2
.

(5)

To meet the deformation continuity at x = l1, and consider the
boundary conditions at x = 0 and l/2, the general solutions should
satisfy the following equations,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y1 = y2,
∂y1
∂x

=
∂y2
∂x

, for x = l1

y1 = 0,
∂y1
∂x

= θ, for x = 0

∂y2
∂x

= 0, for x =
l
2
.

(6)

Overall consider above equations, we can deduce the char-
acteristic equation for the critical buckling conditions of pattern
transformation as follows,

α1

(
l1 +

α2
2

α2
1
l2
)
tanα1l1 − 1

α1

(
l1 +

α22

α12
l2
)

+ tanα1l1
· tanα2l2 =

α1

α2
. (7)

With this characteristic equation, considering Nx = α1
2D1 =

α2
2D2, the critical buckling force Fcr can be obtained with Fcr =

α2
1D1b for any given D1, D2, l1, l2 and b.
Specially, if D1 = D2, the metamaterial with stepwise section

becomes conventional square lattice structures, and we have α1 =

α2 = α because Fcr = α2
1D1b = α2

2D2b, then Eq. (7) can be
simplified to be tan (αl/2)+αl/2 = 0 by considering l1 + l2 = l/2,
which is the same transcendental equation as derived in Ref. [22].

As we all know, the equivalent physical properties of metama-
terials are governed by their architectures rather than composi-
tions, therefore it is more meaningful to study the critical buckling
strain εcr rather than the critical buckling force Fcr .

For the structure shown in Fig. 6, before the buckling occurs, the
deformation is only the compression of the vertical plates, and the
stresses for different sections in the vertical plate can be obtained
with σ1x = F /(bw1) and σ2x = F /(bw2). For plane-strain problem,
the stress and strain follow the following relationship,

εx =
1 − ν2

E
σx. (8)

The deformations for different sections in the vertical plate can
be obtained to be ∆l1 = ε1xl1 and ∆l2 = ε2xl2. Then, we can derive
the total strain of the vertical plate to be

εx =
∆l1 + ∆l2
l1 + l2

=
F (1 − ν2)

Eb
·

1
weq

(9)

where weq = (l1 + l2)/(l1/w1 + l2/w2) is the equivalent sectional
width of modified structures with stepwise sections w1 = l − 2r1
and w2 = l − 2r2.

Fig. 7. Critical buckling strain for the pattern transformation of modified metama-
terial models with r2/l = 0.42.

Substituting Fcr = α2
1D1b into Eq. (9), we can obtain the critical

buckling strain as follows,

εcr =
1
12

α1
2w1

3

weq
. (10)

4.3. Comparison between theoretical and numerical results

As discussed above, with different combinations of r1/l, r2/l and
l1/l, we can produce various finite element models and calculate
out corresponding α1

2w1
3. The critical buckling strains can then be

theoretically obtained with Eq. (10) or numerically obtained with
finite element analysis. The theoretical results will be compared
with the numerical results in the following.

We first focus on a series ofmodifiedmetamaterialswith l = 10
mm, r2 = 4.2 mm, 0.1 ≤ l1/l ≤ 0.4 and r1 obeying the natural
constraint l2/l ≤ r1/l ≤ 0.48. The critical buckling strains for the
pattern transformation these modified metamaterials are plotted
in Fig. 7. The square dots represent the numerical results and the
solid lines represent the theoretical results.

From Fig. 7, we can clearly see that the critical buckling strain
decreases as r1/l increases when r1/l takes a relatively large value
while keeps almost constant when r1/l takes a relatively small
value and the theoretical results only agree well with numerical
results when r1/l takes a relatively large value.

In the same way, for other series of modified metamaterials
with l = 10mm, 4.2 mm ≤ r2 ≤ 4.8 mm, 0.1 ≤ l1/l ≤ 0.4 and l2/l ≤
r1/l ≤ 0.48, the critical buckling strains for pattern transformation
can be obtained both by theory and numerical simulation, and the
critical buckling strains are presented in Fig. 8. The square dots and
solid lines represent the numerical results and theoretical results,
respectively.

From Fig. 8, it can be found that, all the critical buckling strains
of the modified metamaterials with different r2/l follow a simi-
lar relationship and the theoretical results only agree well with
numerical results when r1/l takes a relatively large value. This is
because that the section width l −2r1 increases as the decrease
of r1/l, and when the section width is large enough, the modified
metamaterial cannot be treated as consisting of plates, and thus the
formula (10) derived from buckling of plates are not applicable any
more. As we can see from Figs. 7 and 8, the critical buckling strains
are almost constant for r1/l <0.3, regardless of the combination
of l1/l and r2/l. Accordingly, we can learn that the critical buckling
strains are the same as long as the slimmed regions are the same,
with the same l1/l and r2/l, for the conventional lattice structures
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Fig. 8. Critical buckling strain for the pattern transformation of modified metamaterial models with r2/l = 0.43–0.48 (a–f).

with r/l < 0.3. Therefore, we can effectively handle the pattern
transformation of this kind of structures for desired buckling con-
ditions.

4.4. Effectiveness verification for 3D solid models

From previous analysis, we have known that, pattern transfor-
mation can be realized in conventional lattice structures by slim-
ming down the sections in the middle or widening the sections at
the corner of the columns, and the slimmed area should better not
exceed half-length while the widened area should better exceed
half-length of the column. This finding and prediction of buckling

strain for pattern transformation have been already proved and
validated by the finite element analysis in Sections 4.1 and 4.3with
2D plane-strain models.

To validate the predictions and formulas for 3D solid models,
we have studied three RVE models whose initial sectional shapes
are presented in Fig. 9(a). Model I and model III can be treated as
slimming down the section in themiddle andwidening the section
at the corners of the columns inmodel II, respectively. Eachmodels
consist of 16 primitive cells with l1/l = 0.3, the size and the
thickness of the primitive cell are l = 10 mm and b = 10 mm,
respectively. The compression of the three RVE models are firstly
investigated as eigenvalue problem via linear buckle analysis by
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Fig. 9. (a) Initial shapes and (b) first-order buckling patterns of RVE models, (I) r1/l = 0.42, r2/l = 0.46, (II) r1/l = r2/l = 0.42, (III) r1/l = 0.3, r2/l = 0.42.

Table 1
Critical buckling forces (the value in a single vertical plate) and strains of model I, II and III.

Model I Model II Model III

Global buckling Pattern transformation

Theory Fcr (N) 7.24 × 10−3 \ 0.0392 0.0606
εcr 9.08 × 10−3 \ 0.0351 0.0347

RVE model Fcr (N) 5.34 × 10−3 0.0156 0.0326 0.0432
εcr 9.03 × 10−3 0.0175 0.0356 0.0361

Full model Fcr (N) 4.69 × 10−3 0.0140 0.0431 0.0375
εcr 7.94 × 10−3 0.0157 0.0289 0.0315

applying PBCs on the parallel opposite edges, and the first-order
buckling patterns are shown in Fig. 9(b).

Post-buckling analysis is then conducted in two manners: (1)
considering RVE models with PBC and (2) considering full models.
As we can see from the buckling patterns in Fig. 9(b), the sections
at the top and bottom boundaries of model I and model III are still
flat after buckling, but the sections of model II only keep flat in
every second horizontal bars. For the compression of full model,
the top and bottom sections should better keep flat to eliminate
the boundary effects as far as possible. Therefore, the RVEmodel of
model II is altered by another one. Fig. 10(a) and (b) show the post-
buckling patterns of the threemodels in twomanners at a nominal
strain of 10%. Model II exhibits global buckling while model I and
model III exhibit pattern transformation, which proves that by
slimming the sections in the middle or widening the sections at
the corner of the bars in conventional lattice structures can realize
pattern transformation.

Fig. 10(c) and (d) display the experimental images before com-
pression and after compression to a nominal strain of 10%. Com-
pared with the post-buckling patterns obtain from numerical sim-
ulations, we can find that the experimental images are slightly
different. This is because there are too many uncertain factors
during experiments and the boundary conditions during numerical
simulations can hardly be consistent with experiments. For exam-
ple, the friction coefficients of top andbottomsurfaces between the
sample and the platform, the imperfection of the printed sample,
and so on. However, the experimental results are coincident with
the numerical results for the prediction that pattern transforma-
tion can be realized in conventional lattice structures by slimming
down the sections in the middle or widening the sections at the
corner of the columns.

As we know that initial geometric imperfection may influence
the post-buckling of periodic cellular structures, if we introduce
a large enough initial geometric imperfection corresponding to

pattern transformationmode, we can also realize pattern transfor-
mation in model II. To validate the theoretical prediction of critical
buckling force and strain for pattern transformation, we also carry
out numerical simulations for model II after introducing into a
large enough initial geometric imperfection corresponding to pat-
tern transformation mode. The numerical results for the nominal
stress versus nominal strain behavior of the three models, up to a
compressive strain of 0.1, are shown in Fig. 11. The behaviors are
all characterized by initial linear elastic behaviors with a sudden
change to plateau stress. Besides, the departures from linearity
for all full models are earlier than that for RVE models, this is
because that the application of PBC restricts the deformation at the
boundary and makes it difficult for RVE models to alter patterns.

The critical buckling strains and critical buckling force for the
three models obtained from numerical results are then compared
with theoretical predictions as shown in Table 1.

From the data in Table 1, assuming the numerical results are
accurate, we can figure out the relative errors of critical buckling
strain between the theoretical predictions and RVE numerical re-
sults for model I, model II and model III to be 0.55%, 1.40% and
3.88%, respectively. The discrepancies between theoretical values
and numerical results of critical buckling force are caused by the
plane-strain conditions considered in the theoretical analysis. If we
multiply the theoretical values of critical buckling force by (1−ν2),
the relative errors of critical buckling force between the theoretical
predictions and RVE numerical results for model I, model II and
model III can be obtained as 3.03%, 8.63% and 6.60%, respectively.

5. Conclusions

It is well known that global buckling is the prior buckling
mode for conventional square lattice structures. But during our
study, we find that the preferential buckling pattern can be altered
to be pattern transformation by slimming down the sections in
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Fig. 10. Post-buckling patterns of three models in two manners: (a) RVE models with PBC and (b) full models at a nominal strain of 10%, and experimental images at a
nominal strain of (c) 0 and (d) 10%.

Fig. 11. Nominal stress vs. nominal strain curves for three models showing numer-
ical results (RVE model and full model) and experimental results.

the middle or widening the sections at the corner of the frames
in conventional square lattice structures. To prove this, we have
studied the buckling behavior for a type of periodic metamaterials
constituted by frames with stepwise sections governed by three
parameters, l1/l, r1/l and r2/l.With thehelp of a linear buckling anal-
ysis procedure, the phase diagram of first-order buckling modes
gives out the effective modifying area. The slimmed area should
better not exceed while the widened area should better exceed

half-length of the frames, or the effort in achieving pattern trans-
formation will be significantly impaired. Besides, as the relative
sectionwidth, (l− 2 r2)/l, becomes larger, it is more andmore diffi-
cult to achieve pattern transformationwith this designingmethod.
Furthermore, we have theoretically analyzed the critical buckling
force and critical buckling strain for the pattern transformation of
this type of metamaterials. The designing method and theoretical
prediction of the critical buckling conditions are verified by nu-
merical simulations and experimental studies. This study provides
a possibility to achieve pattern transformation based on conven-
tional lattice structures and a theoretical approach to predict the
critical buckling conditions for pattern transformation. We expect
our study will contribute to the design and application of lattice
metamaterials.
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