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Novel pattern transformation occurs when periodic cellular structures are compressed beyond a critical value.
We have designed a kind of composite periodic cellular metamaterials with soft matrix and interfacial layers,
and the buckling modes phase diagram of the composites is obtained. The buckling behaviors of the composites
are studied both in numerical simulations and experiments. It is evident that the critical strains of composite pe-
riodic cellular structures are always lower than those of single-material periodic cellular structures, regardless of
the interfacial layer is stiffer or softer than the matrix materials. We have proposed a theoretical method to pre-
dict the critical strain for the pattern transformation of single-material periodic cellular structures. Furthermore,
based on the simulation and experiment results, the theoretical method is developed to predict the critical strain
for a definite range of combinations of materials and porosities of the periodic cellular composites.

© 2017 Published by Elsevier Ltd.
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1. Introduction

Metamaterials are rationally engineered multiscale materials whose
equivalent physical properties are governed by their architectures rather
than compositions. Because of their capability of exhibiting novel
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properties for broad ranges of potential applications, metamaterials
have attracted great interests in recent years [1,2]. When metamaterials
are artificially and properly designed, themetamaterials can exhibit neg-
ative refractive index [3–6], or negative Poisson's ratio [7–12], or acoustic
cloaking [13,14], which are impossible to exist in conventional materials.
Among them, the auxetic (negative Poisson's ratio) response to an exter-
nal load is perhaps the most well-known and of particular interests [15].

Materials with auxetic behavior will contract (expand) transversally
when they are axially compressed (stretched). The auxetic behavior has
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been observed in a variety of systems, such as layered ceramics [16], re-
entrant foams [17], textile structures [18], origami [19] and kirigami [20,
21] geometries, structures with rotating elements [22–24], corrugated
sheets [25] and other artificially designed structures [26–29]. Periodic
cellular structures and periodic lattice structures are two common
types of the metamaterials which have auxetic behavior.

The inspiration for periodic cellular structures comes from natural
world, such as iridescent phenomena in butterflies, beetles, moths,
birds and fish. When this kind of periodic cellular structures is com-
pressed beyond a critical value, a novel pattern transformation will ap-
pear. The pattern transformation of periodic cellular structures is caused
by local elastic instabilities and often reversible and repeatable [30].
Alongwith the local buckling, the periodic cellular structure will under-
go a transformation from initial circular voids to alternating mutually
orthogonal elliptic holes. There are many factors that affect the pattern
transformation, such as the initial porosity of structures [8], the arrange-
ment of holes [31], the loading condition [32,33], the shape [34] and in-
clusions [35] of holes, and the viscoelastic property of component
materials [36].

Periodic lattice structures are advanced light weight periodic mate-
rials with specific high strength and stiffness [37,38], and have the po-
tential application in aerospace engineering [39], energy absorption,
and as the core of lightweight sandwich panels [40]. Buckling of col-
umns is the dominated collapse mode of periodic lattice structures.
But the local buckling induced pattern transformationmay not be a pre-
ferred buckling mode, for example, the stress of local buckling for a
square honeycomb lattice is always higher than the stress that trigger
the global buckling mode [41–43]. In general, pattern transformation
is a buckling mode that will surely appear in lattice structures.

However, most of the previous studies on the buckling of periodic
cellular structures were in numerical simulations or experiments
[44–49]. Only a few theoretical studies are available, and most of the
theoretical studies are focused on lattice structures [41,50,51] based
on the beam-column solution as presented by Timoshenko and Gere
[52], or through analogy with rigid link lattice systems [27], or based
on an energy approach [24]. Though a beammodel was recently devel-
oped byHeitkam et al. [53] to study the elastic properties of cellularma-
terials with spherical voids, the model is for a general porous material
and does not consider the buckling properties. It still lacks of a theoret-
ical approach to predict the pattern transformation behavior for period-
ic cellular structures.

To fill this apparent gap, here we proposed a theoretical method to
predict the critical strain for the pattern transformation of periodic cel-
lular structures. Since the weakest section dominates the pattern trans-
formation, the periodic cellular structures with circular holes can be
simplified as a cross-shaped structure (a structure with square holes)
with the weakest section, and can be dealt with via the buckling theory
of square lattice frames. However, in our study, we have found an inter-
esting phenomenon that, just by introducing very thin interfacial layers
into the single-material periodic cellular structure, the critical strain for
pattern transformation can be significantly reduced. At the same time,
the buckling behaviors of composite periodic cellular structures with
soft matrix and interfacial layers are more variety. This is because wrin-
kling of the interfacial layers is influenced by many factors, which has
Fig. 1. Schematic of pattern transformat
been reported by Li et al. [54] in the work of “Wrinkling of interfacial
layers in stratified composites”. To cover the most possibilities for the
various buckling behaviors of periodic cellular composites, we have per-
formed a number of finite element simulations and experimental stud-
ies with different material combinations and porosities, and drawn a
phase diagram of the various buckling modes based on these results.
Furthermore, we presented an analytical method to predict the critical
strain for a definite range of combinations of materials and porosities
of the composite periodic cellular structures based on the simulation
and experiment results.

2. Materials and methods

Pattern transformation is a novel property of periodic cellular struc-
ture, and it appears when the periodic cellular structure is compressed
beyond a critical value [30], as shown in Fig. 1. The pattern transforma-
tion of periodic cellular structures is induced by local elastic instabilities
and often reversible and repeatable. The nominal strain corresponding
to the pattern transformation is named critical strain in this study.

2.1. Finite element simulation

2.1.1. Model and material properties
The pattern transformation of periodic cellular structures has been

studied for many years. The periodic cellular structure is composed of
primitive cells as shown in the left of Fig. 1, and at least 2 × 2 primitive
cells should be employed to characterize the pattern transformation be-
cause the periodicity is p = (2,2) [55]. However, the global buckling of
periodic cellular structure has no periodic cell and the buckling shapes
vary as the sizes of the models change. Considering the difference be-
tween pattern transformation and global buckling, the size of represen-
tative volume element (RVE) model for a periodic cellular structure is
taken as 2 × 2 and 4 × 4 primitive cells, with circular holes of radius
ranging from r = 3.2 mm to 4.9 mm and a nearest center-to-center
spacing of l = 10 mm, which give porosities from about ϕ = 0.322 to
0.754. The schematic for pattern transformation of RVE model consist
of 4 × 4 primitive cells is shown in Fig. 1. The material properties are
taken as E = 3 MPa and ν = 0.4995.

Based on the study of pattern transformation in periodic cellular
structures, we designed a kind of composite periodic cellular structures
with interfacial layers, and the primitive cell is shown in Fig. 2(b). The
size of the RVEmodel for a composite periodic cellular structure consists
of 4 × 4 primitive cells is shown in Fig. 2(a), with a nearest center-to-
center spacing l= 10 mm and different radii r of circular holes ranging
from r = 2.4 mm to 4.9 mm, which gives the porosities from 0.181 to
0.754. As we can imagine, it will play a bigger role to the buckling of
composites as the interfacial layer is getting thicker. In this study, we
take the thickness of interfacial layers to be t = 0.05 mm for the cases
with a center-to-center spacing l = 10 mm as an example, which
gives a thickness-to-length ratio of t/l = 0.005 between the thickness
of the interfacial layers and center-to-center spacing. Though the inter-
facial layers are very thin compared to the cellular composite, the inter-
facial layers can significantly influence the buckling behavior of periodic
cellular structures.
ion for periodic cellular structures.

Image of Fig. 1


Fig. 2. (a) Schematic of composite periodic cellular structureswith interfacial layers. (b) Geometry andmaterial details of the composite periodic cellular structures in aminimumunit cell.
(c) Mesh details of the composite periodic cellular structures in a primitive cell. (The element number of the primitive cell is 18,628 for r/l=0.43). (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)
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Young's moduli of the matrix of periodic cellular structures and the
interfacial layers are E and E0, respectively, and the Young modulus ra-
tios α = Ε0/Ε are in the range from 0.01 to 1,000,000, which covers
most possibilities of materials composition, regardless of the interface
layers are stronger or weaker than the matrix cellular structures.
Poisson's ratio of the interfacial layers and the cellular matrix are as-
sumed to be the same.

Numerical simulations are carried out using the commercial soft-
ware ABAQUS, and neo-Hookean model is employed to model the ma-
terial properties. All the RVE models of periodic cellular composites
are meshed using the 6-node modified quadratic hybrid plane-strain
triangle elements (ABAQUS element type CPE6MH). The element num-
ber varies as the radius-to-length ratios r/l changes and is about 20,000
in a unit cell of periodic cellular composites. Fig. 2(c) shows the mesh
details of a unit cell with r/l = 0.43.

The instabilities of the RVE models are firstly investigated as an ei-
genvalue problem via the linear buckle analysis in ABAQUS. The linear
buckling analysis will yield many eigenvalues and corresponding buck-
lingmodes, nevertheless, generally only the lowest eigenvaluewith the
corresponding bucklingmode is of interest, because the bucklingmodes
with higher eigenvalues are difficult to trigger under quasi-static load-
ing conditions [44]. Therefore, the critical strain (corresponding to the
first eigenvalue) can be estimated in the linear range of deformation.
However, to obtain more accurate values of the critical strain, a post-
buckling analysis must be performed. The first eigenmode is introduced
as an initial geometric imperfection to the finite element model for the
post-buckling analysis, and the analysis is conducted using ABAQUS/
STANDARD including geometric nonlinearity.

2.1.2. Boundary conditions
In the RVE model, two reference points (Rx and Ry) are defined in

order to implement the boundary condition. The uniaxial compression
load is applied by giving a displacement cy to Ry in y direction. The dis-
placements of Ry in x direction and of Rx in y direction are set to zero,
while the displacement of Rx in x direction is left free. To avoid the
rigid motion of the model, the center of the left-bottom minimum unit
is fixed by setting the displacement in the x direction to zero. With the
coordinate system shown in Fig. 2(a), the periodic boundary condition
is applied on the parallel opposite edges, which can be expressed as fol-
lows,

ux Lx; yð Þ−ux 0; yð Þ ¼ εxLx ¼ cx
uy Lx; yð Þ−uy 0; yð Þ ¼ 0
ux x; Ly
� �

−ux x;0ð Þ ¼ 0
uy x; Ly

� �
−uy x;0ð Þ ¼ εyLy ¼ cy

ð1Þ

where ui(x,y) means the displacement vector at coordinate (x,y), Li and
εi represents the length and average strain of the RVE model,
respectively, and ci represents the displacement of the reference point
Ri in i direction, i = x,y.
2.2. Experimental studies

The single-material periodic cellular structures are fabricated by
synthesizing PDMS (the elastomer base to cross-linker ratio is 30:1),
and the sizes of samples are about 78 mm × 78 mm × 9.5 mm, the
radii of the circular holes are measured to be r = 3.18 ± 0.03 mm and
r = 3.45 ± 0.03 mm for two different samples, the nearest center-to-
center spacing is measured to be l = 9.75 mm.

The periodic cellular composite structures are fabricated via two
methods: one is by printing with a multi-material 3D printer (Ob-
ject350 Connex3, Stratasys Inc., USA); and the other one is by syn-
thesizing PDMS with different interfacial layers, such as PET film or
steel slice.

Two polymers were used in the 3D printing: Vero White and
Tango Black Plus. Vero White is a rigid plastic at room temperature
with Young's modulus measured to be about 1.75 GPa, while Tango
Black Plus is a rubbery material at room temperature with Young's
modulus measured to be about 1.15 MPa. The matrix phase of
periodic cellular structures was printed in Tango Black Plus, while
the interfacial layers were printed in Vero White, which gives a
Young's modulus ratio of about α = 1500. The size of sample is
80 mm × 80 mm × 10 mm, and the thicknesses of interfacial layers
are t = 0.1 mm.

As for the second method, an acrylic mold was first made with a
laser cutting machine from a thick acrylic plate, as shown in
Fig. 6(a). Then, the PET film or steel slice was spliced into a frame
as the green lines showed in Fig. 2. Finally, the cellular composites
were fabricated by synthesizing PDMS in the mold with the spliced
frame in it. The elastomer base to cross-linker ratio of PDMS for the
cellular composites with PET film and steel slice are 50:1 and 30:1,
respectively. As shown in Fig. 6(b)–(c), the sizes of samples fabricat-
ed with the mold are 40 mm × 40 mm × 10 mm, the radii of circular
holes are measured to be r=3.05 mm, and the thicknesses of the in-
terfacial layers are t=0.048 mm (PET film) and t=0.049 mm (steel
slice), respectively.

Young's modulus of PDMS with different ratio of elastomer base
to cross-linker for 30:1 and 50:1 are measured to be about 0.7 MPa
and 0.05 MPa, respectively. Young's modulus for the steel slice is
about 210 GPa and for PET film is about 2 GPa, thus the modulus
ratio of the two samples are α = 300,000 and α = 40,000,
respectively.

The uniaxial compression tests were performed using an
“SHIMADZU AGS-X50N” machine with a 1 kN load cell, and the load
rate is about 0.133 mm/s. Acrylic sheets were used to help eliminate
the out-of-plane buckling.

Image of Fig. 2
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3. Results and discussion

3.1. Buckling of composite periodic cellular structures with soft matrix and
interfacial layers

The buckling patterns of periodic cellular composites with soft ma-
trix and interfacial layers are investigated through numerical simula-
tions and experimental studies, respectively. Based on the linear
buckle analysis in ABAQUS, we summarize the wrinkling patterns of
the RVE model with 2 × 2 primitive cells into a phase diagram as
shown in Fig. 3.

From Fig. 3, it can be observed that the instability can be
partitioned into four different modes, which are marked with differ-
ent colors respectively: The red region (I) and the light blue region
(II) both represent the global buckling mode as shown in
Fig. 3(a) and (b), but the interfacial layers of the models in region II
are buckled additionally as shown in Fig. 3(b); the blue region (III)
represents the pure interfacial wrinkling mode as shown in
Fig. 3(c); and the black region (IV) represents the local buckling
mode as shown in Fig. 3(d). When it lies on the intersection lines be-
tween two regions, the buckling modes possesses both features of
the two regions. For example, the buckling mode corresponding to
the point (α=2000, r/l=0.32) in the red circle which lies on the in-
tersection between regions (III) and (IV), owns the features of both
local buckling mode and the interfacial wrinkling mode as shown
in Fig. 3(e); and buckling mode corresponding to the point (α =
200,000, r/l = 0.33) in the blue circle which lies on the intersection
between regions (I) and (IV), has the characteristics of both global
buckling mode and local buckling mode as shown in Fig. 3(f).

From the phase diagram in Fig. 3, we can draw the following inter-
esting conclusions. First, when the Young's modulus ratio α is large
enough, the periodic cellular composites will present the global buck-
ling mode without additional buckling interfacial layers and are inde-
pendent of the radius-to-length ratio r/l. Second, for the case α = 1,
since Poisson's ratios of the interfacial layers and the cellular matrix
Fig. 3. Phase diagram of the buckling modes of composite periodic cellular structures with 2
structures with different Young's modulus ratio α and radius-to-length ratio r/l. There are four t
facial layers (I), the global buckling patternwith additional buckling interfacial layers (II), the pu
patterns corresponding to the four buckling modes are presented as figures (a)–(d), respective
sesses both the features of these twomodes. (f) represents the bucklingmode of the intersection
ling. Thewhite regionwith hollow squares represent that the composite structures are not robu
figure, the reader is referred to the web version of this article.)
are assumed to be the same, the composite periodic cellular structure
become a single-material periodic cellular structure, and the smallest
radius-to-length ratio r/l for pattern transformation is about 0.27 corre-
sponding to a porosity of 0.229,which is different from0.34 provided by
Bertoldi et al. [8]; The reason for the difference will be explained later.
Third, though the regions (II) and (IV) are separated by the region (III)
in the radius-to-length ratio range 0.24 ≤ r/l b 0.37, the intersection be-
tween regions (II) and (IV) are in the same line for thewhole range, thus
the post-buckling for the composites in region (III) should also be sepa-
rated into two modes (global buckling and local buckling) by the dash
green line, in fact, the post-buckling analysis also proves this. Fourth,
when the Young modulus ratio α b 0.1, the bonding of the composite
structuresmay be tooweak to bear the compressive load, thus resulting
to no buckling modes, as presented in Fig. 3 by the white region with
hollow squares, and it is more obvious when the radius-to-length
ratio r/l is smaller.

The critical strain for first eigenmode of pattern transformation
(local buckling mode) converges to that of 2 m × 2 m (m = 1,2, …)
primitive cells; but the critical stain for second eigenmode of global
buckling monotonically decreases with increasing RVE sizes [55].
Thus, we can conclude that, with a smaller RVE size, the critical strain
for global buckling is much higher than that of pattern transformation.
On the other hand, as the porosity of periodic cellular structures de-
creases, the critical strain for pattern transformation increases more
quickly than that of global buckling [8]. Thus, we can expect that the
critical porosity, at which the critical strain for pattern transformation
is no longer smaller than that of global buckling, will be lower with a
smaller RVE size and the regions corresponding to global buckling
modes will enlarge with a larger RVE size.

To validate this, we have performed simulations with RVE models
consist of 4 × 4 primitive cells, and a similar phase diagram can be ob-
tained as shown in Fig. 4. It can be observed that the instability can
also be partitioned into four different modes, which are marked with
different colors respectively. Both the weak region and the global buck-
ling regions are larger, while the pattern transformation region is
× 2 primitive cells. The solid and hollow dots represent the composite periodic cellular
ypes of bucklingmodes, i.e., the global buckling pattern without additional buckling inter-
re interfacial wrinkling pattern (III), and the local buckling pattern (IV). The representative
ly. (e) represents the buckling mode of the intersection between (III) and (IV), which pos-
between (I) and (IV), which possesses the features of both global buckling and local buck-
st because of theweak interface layers. (For interpretation of the references to color in this

Image of Fig. 3


Fig. 4. Phase diagram of the buckling modes of composite periodic cellular structures with 4 × 4 primitive cells. The solid and hollow dots represent the composite periodic cellular
structures with different Young's modulus ratio α and radius-to-length ratio r/l. There are four types of buckling modes, i.e., the global buckling pattern (I) and (II), the pure interfacial
wrinkling pattern (III), and the local buckling pattern (IV). The representative patterns corresponding to the five buckling modes are presented as figures (a)–(d), respectively. The
white region with hollow squares represent that the composite structures are not robust because of the weak interface layers.
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smaller, in comparison with Fig. 3. From the case α = 1, we can obtain
the smallest radius-to-length ratio r/l for pattern transformation is
about 0.29 corresponding to a porosity of 0.264, which is larger than
the critical porosity obtainedwith the RVEmodels consist of 2 × 2 prim-
itive cells. Therefore, the conclusion is that the porosity for pattern
transformation is smaller with a RVE model of smaller size is proved
Fig. 5. Images of the cellular composites by 3D printing with different radius-to-length ratio r/l
image of the sample). (c)–(d): Thebuckling shape of the samplewith r/l=0.45 ((c) the full sam
0.4 ((e) the full sample, (f) the local image of the sample). (g)–(h): The buckling shape of the
to be right, and we can conclude that the RVE size should be larger
than 4 × 4 primitive cells in Bertoldi et al. [8]. However, we focus on
the critical strains for pattern transformation, which is independent of
RVE size as long as the RVE model is consist of 2 m × 2 m (m= 1,2,…)
primitive cells [55], so numerical simulations with RVE models consist
of N4 × 4 primitive cells will not be included in this paper.
. (a)–(b): The initial shape of the sample with r/l= 0.45 ((a) the full sample, (b) the local
ple, (d) the local image of the sample). (e)–(f): The buckling shape of the samplewith r/l=
sample with r/l = 0.3 ((g) the full sample, (h) the local image of the sample).

Image of Fig. 4
Image of Fig. 5


380 Y. He et al. / Materials and Design 132 (2017) 375–384
With the 3D printing method, one of the samples with a radius-to-
length ratio r/l = 0.45 is shown in Fig. 5(a), and the buckling pattern
is shown in Fig. 5(c)–(d). Fig. 5(e)–(f) and (g)–(h) illustrate the buck-
ling pattern of the samples with radius-to-length ratios r/l = 0.4 and
r/l=0.3, respectively. As for the secondmethod, the initial and buckling
patterns of the samples are presented in Fig. 6.

From the experimental images of buckling patterns shown in Figs. 5
and 6, we can see that, the buckling patterns of periodic cellular com-
posites and interfacial layers agree well with the prediction as illustrat-
ed in Fig. 3. The different buckling patterns corresponding to the
predicted distribution in Fig. 3 can be activated with suitable Young's
modulus ratio α and porosity ϕ (or radius-to-length ratio r/l).
3.2. Characterization of the pattern transformation in single-material peri-
odic cellular structures

Since pattern transformation is indeed a kind of elastic instability,
the weakest section of the periodic cellular structure dominates the in-
stability. To provide a theoretical prediction for the pattern transforma-
tion of periodic cellular structures, we make the following assumptions
and simplifications. As shown in Fig. 7, the cellular structureswith circu-
lar holes of radius r and center-to-center spacing l are first replaced by a
structure with square holes, that is, a cross-shaped structure with a fi-
nite width d = l − 2r. Then, the cross-shaped structure with a finite
width is simplified as a cross frame consisting of bars with rigid joints.
Thus, we can apply Euler's column formula to study the pattern trans-
formation. However, Euler's column formula is only applicable to slen-
der bars, which means that the radii of the circular holes should be
large enough; hence other formulas should be employed to characterize
the buckling of periodic cellular structures with rather small radii.

However, the critical stress for local buckling mode of a square lat-
tice is always higher than the stress needed to trigger the global buck-
ling mode [41–43], hence a higher order buckling mode is employed
in analyzing the pattern transformation of periodic cellular structures
with circular holes. The cross frame in Fig. 7(c) is symmetrical with re-
spect to horizontal and vertical axes, and each member of the
Fig. 6. (a) The acrylic mold for synthesizing cellular composite sampleswith PDMS. (b)–(e) Ima
length ratio is r/l = 0.305, and the PDMS for the cellular composites with PET film and steel sl
framework with rigid joints can be treated as a bar with elastically re-
strained ends. The vertical members of the frames are compressed by
an axial force F, and it is assumed that lateral movement of the joints
is prevented by external constraints. When the load F reaches a critical
value, the vertical bars begin to buckle as indicated by the green lines.
This buckling is accompanied by the bending of horizontal bars, and
these bars will exert reactive moments at the joints of vertical bars.
Hence, the vertical bars can be treated as bars with elastically built-in
ends [52].

Consider a simply supported horizontal bar subjected to two equal
and opposite couples at each hinge joints, the bending moments are
proportional to the rotation angle θ at the joints with the following rela-
tionship,

M0 ¼ 2EI
l

θ ð2Þ

where EI and l denote the flexural rigidity and length of the bar,
respectively.

The moment of vertical bar can be expressed by the following equi-
librium differential equation

M yð Þ ¼ EIy″ ¼ −FyþM0 ð3Þ

where y and y″ are the deflection and the second order derivative of de-
flection of the vertical bar, respectively.

Substituting Eq. (2) into Eq. (3), we can obtain

y″ þ k2y ¼ 2θ
l

ð4Þ

where k2=F/(EI).
Eq. (4) is a second order linear non-homogeneous differential equa-

tion with constant coefficients, and the general solution is

y ¼ A sinkxþ B coskxþ 2θ
k2l

ð5Þ
ges of the cellular composites before ((b)–(c)) and after ((d)–(e)) buckling. The radius-to-
ice are 50:1 and 30:1, respectively.

Image of Fig. 6


Fig. 7. Schematic of the simplification of periodic cellular structure into a cross frame. (a) The initial periodic cellular structureswith circular holes (radius r and center-to-center spacing l).
(b) The cross-shape structure with a finite width (d= l− 2r) after first simplification. (c) The cross frame structure after second simplification and the green lines indicate the buckling
geometry when the load F reaches its critical value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Consider the following boundary conditions

y 0ð Þ ¼ Bþ 2θ
k2l

¼ 0

y0 0ð Þ ¼ Ak ¼ θ

y0 l=2ð Þ ¼ Ak cos
kl
2
−Bk sin

kl
2
¼ 0

8>>><
>>>:

ð6Þ

We can obtain

tan
kl
2
þ kl

2
¼ 0 ð7Þ

which gives kl≈4.058, hence the critical force corresponding to the
buckling of the frame can be deduced as

Fcr ¼ k2EI ¼ 16:47EI

l2
ð8Þ
Fig. 8. Critical strains of periodic cellular structureswith different value of r/l. The solid dots den
column formula without and with straight-line formula. The hollow circles represent the ex
represent our complementary experimental results. (For interpretation of the references to col
According to the general form of Euler's column formula, Eq. (8) can
be expressed as follows,

Fcr ¼ π2EI

μlð Þ2
ð9Þ

where μl is the reduced length of the compressed bar and μ = 0.774.
Let i ¼ ffiffiffiffiffiffiffi

I=A
p

represents the radius of gyration and I=(l−2r)3/12 is
the moment of inertia; the critical stress can be derived as

σ cr ¼ Fcr
A

¼ π2E

μl=ið Þ2
¼ π2E

λ2 ð10Þ

where A= l− 2r and λ= μl/i are the cross-sectional area and slender-
ness ratio of the bar, respectively. The critical stress depends only on the
slenderness ratio λ and Young's modulus E of the material.
ote numerical results, the black line and red line represent the theoretical results by Euler's
perimental results collected from previous studies [8,30,55,56], and the hollow squares
or in this figure legend, the reader is referred to the web version of this article.)

Image of Fig. 8
Image of Fig. 7


Fig. 9. Critical strains for the periodic cellular composites with interfacial layers of different Young's modulus ratio α and radius-to-length ratio r/l. The solid lines represent the critical
strains for first-order buckling modes, and the dash lines represent the critical strains for pattern transformations (local buckling modes) when pattern transformation is not the first-
order buckling mode.
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Consider plane-strain problem, the critical stress in Eq. (10) can be
rewritten as

σ cr ¼ π2E

λ2 1−ν2
� � ð11Þ

where ν is Poisson's ratio of the material.
Thus, the critical value of nominal strain corresponding to the buck-

ling can be deduced as

εcr ¼ σ cr

E
¼ π2

λ2 1−ν2
� � ð12Þ

FromEq. (12), it can be found that the critical strain only depends on
the slenderness ratio λ and Poisson's ratio ν of thematerial, and is inde-
pendent of the material's Young's modulus E, which is consistent with
the well-known property of metamaterials that the equivalent physical
properties of metamaterials are governed by their architectures rather
than compositions. The effect of Poisson's ratio is introduced due to
the plane-strain assumption.
Fig. 10. Critical strains for different Young's modulus ratios ((a)α N 1 and (b) α b 1) in relatio
represent numerical results, and the solid lines represent the fitting curves for the numerical r
However, since the above discussions assume that the bar is very
slender, i.e. the expression is only valid for bars with high slenderness
ratios. For bars with low slenderness ratios, empirical formulas, such
as straight-line formula and parabolic formula, should be employed.

To validate the scope of application of formula (12) for a 2Dproblem,
we carry out finite element simulations with different RVE models, and
the critical strains for each model are presented as square dots in Fig. 8.
The finite element simulation results agree well with the theoretical
prediction of (12) derived from Euler's column formula when r/l N
0.405 (i.e., ϕ N 0.515) and depart from that prediction to an approxi-
mately linear behavior when r/l ≤ 0.405. The linear behavior can be rep-
resented by a straight-line formula εcr=0.653−1.45r/l by fitting the
simulation results. Thus, the critical strains of periodic cellular struc-
tures with different value of r/l can be predicted as

εcr ¼
π2

λ2 1−ν2
� � ; r

l
N0:405

0:653−1:45
r
l
;
r
l
≤0:405

8>><
>>:

ð13Þ
n to the critical strains for α = 1 (single-material periodic cellular structures). The dots
esults.

Image of Fig. 10
Image of Fig. 9


Table 1
Values of β1 and β2 for different Young's modulus ratios α.

α 0.1 0.2 1 2 10 20 50 100
β1 0.91173 0.96623 1 0.97858 0.798 0.64338 0.36975 0.17249
β2 0.03001 0.01294 0 0.05563 0.36512 0.59482 1.31541 1.77847
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The hollow circles in Fig. 8 are the experimental results collected
from previous studies [8,30,55,56]. However, the existing experimental
results in previous reports are only for larger porosities. Therefore, we
performed two complementary experiments with radius-to-length ra-
tios about r/l= 0.354 and 0.326, and the complementary experimental
results are shown as the hollow squares in Fig. 8. The experimental re-
sults also validate the prediction of formula (13).

3.3. Characterization of the pattern transformation in composite periodic
cellular structures

The local buckling modes correspond to the pattern transformation
of periodic cellular composites with interfacial layers. Consider cases
in the range of 0.32 ≤ r/l ≤ 0.49 and 1 ≤ α ≤ 100, with appropriate initial
geometric imperfections corresponding to different eigenmodes (first-
order bucklingmode or local bucklingmode) introduced to thefinite el-
ement model, the critical strains for each case can be obtained through
the post-buckling analysis in the finite element simulation are shown in
Fig. 9. As we can see from Fig. 3, the first bucklingmodes of the periodic
cellular composites are pattern transformation unless α ≥ 20 and r/l ≤
0.37. The critical strains for the first-order buckling of periodic cellular
composites are presented in solid lines as shown in Fig. 9. If the first-
order buckling is not pattern transformation, the local buckling mode
is introduced as the initial geometric imperfection to trigger the pattern
transformation during the post-buckling analysis and the critical strain
for that kind of pattern transformation is depicted in dash lines shown
in Fig. 9.

From Fig. 9, we can observe that, if the Young's modulus ratio α is
constant, the critical strains and the radius-to-length ratios have one-
to-one corresponding relations, hence we could utilize the critical
strains εcr forα=1 (which are also the critical strains for corresponding
single-material periodic cellular structure with the same porosities) to
represent the radius-to-length ratios r/l. Accordingly, the critical strains
εc for other Young's modulus ratios in Fig. 9 can be re-plotted in relation
Fig. 11. The curves of β1 and β2 as a fun
to εcr in dots shown in Fig. 10(a). Similarly, we could obtain the relation-
ships between the critical strains for α b 1 and α=1, which are plotted
in dots shown in Fig. 10(b).

From the results in Fig. 10, we can draw the following conclusions:
First, just by introducing very thin interfacial layers into the periodic cel-
lular structures, the critical strain for pattern transformation can be sig-
nificantly influenced. Second, regardless of the interfacial layer is harder
(α N 1) or softer (α b 1) than the matrix periodic cellular structure, the
critical strains for composite periodic cellular structures are all lower
than the single-material periodic structures. This is because the critical
buckling strains for the interfacial layers is very small because of their
thin sections, thus the buckling of the interfacial layers will introduce
imperfections to the periodic cellular composites and trigger the com-
posites buckling. Third, the larger the difference between the Young
modulus of the interfacial layers and thematrixmaterials, themore sig-
nificant the critical strain drops.

Besides, we found that the relationship between the critical strains
for α = 1 and other Young's modulus ratios follow formulas in a same
form, which can be expressed as follows

εc ¼ β1εcr þ β2ε
2
cr ð14Þ

where εcr and εc represent the critical strains for α=1 (single-material
periodic cellular structure) and other Young's modulus ratios (compos-
ite periodic cellular structures), respectively. The values of the parame-
ters β1 and β2 are fitted and listed in Table 1.

Furthermore, the values of β1 and β2 follow respective the algebra
expressions in relation to α as shown in Fig. 11 and the relationships
can be expressed as follows,

β1 ¼ 1−0:067 � lgα−0:17 � lgαð Þ2
β2 ¼ 0:065 � lgα þ 0:19 � lgαð Þ2 þ 0:11 � lgαð Þ3 ð15Þ

As we can see from Eqs. (14)–(15), the critical strains εc for periodic
cellular composites only depend on theYoung'smodulus ratioα and the
critical strain εcr for the corresponding single-material periodic cellular
structure with a same radius-to-length ratio r/l. The critical strain εcr
for the corresponding single-material periodic cellular structure can
be attained from Eq. (13), once the radius-to-length ratio r/l and
Poisson's ratio ν are known. Thus, for the type of periodic cellular com-
posites with a thickness-to-length ratio t/l = 0.005 in this study, the
ction of Young's modulus ratio α.

Image of Fig. 11
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critical strain for pattern transformation can be predicted by
Eq. (13)–(15), when the periodic cellular composites with different α
and r/l are compressed.

4. Conclusions

In this study, a new composite periodic cellular structure with inter-
facial layers is developed and its buckling modes are explored through
experimental studies and numerical simulations. When the periodic
cellular composites are applied with a uniaxial compression loading
and compressed beyond a critical value, many interesting novel phe-
nomena can be found. The most exciting thing is that, just by introduc-
ing very thin interfacial layers into the periodic cellular structures, the
critical strain for pattern transformation can be significantly influenced
and is always lower than the single-material periodic cellular structure,
regardless of the interfacial layer is stiffer or softer than the matrix ma-
terials. Besides, we proposed a theoretical method to predict the critical
strain for pattern transformation of single-material periodic cellular
structures, and the theoretical prediction agrees quite well with the ex-
periment and simulation results. Finally, based on the simulation and
experimental results of composite periodic cellular structures, the theo-
retical method is further developed to predict the critical strain for a
definite range of combinations of thematerials and porosities of the pe-
riodic cellular composites. The study provides a promising development
of architected metamaterials and offers the possibility to control the
buckling critical strain of periodic cellular structures, thus may widen
the applications of this kind of structures.
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