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a b s t r a c t

Shape memory polymers (SMPs) are a class of polymeric smart materials that have the
capacity to return from a deformed state (impermanent shape) to their original state
(permanent shape) by temperature stimulus. In this work, we propose a novel phase-
transition-based viscoelastic model including the time factor for shape memory poly-
mers (SMPs), which has a clearer physical significance. To describe the phase transition
phenomenon of SMPs, our new model defines different constitutive structures for above
and below transformation temperature separately. As the proposed viscoelastic model is
based on multiplicative thermoviscoelasticity, it can not only be used for different types of
SMP materials, but also can be used to treat large strain problems. To validate the model's
availability and show the model's capability of reproducing the shape memory effect
(SME), two testing examples are predicted with this new constitutive model. The pre-
diction results of the simulation are in good agreement with the available experimental
results.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Shape memory polymers (SMPs) are a kind of soft and smart materials that can maintain a deformed state (impermanent
shape) with a pre-deformation at a high temperature and subsequently cooling it down to a lower temperature. The
memorized original state (permanent shape) can be recovered by rising the temperature. Compared with traditional shape
memory materials e.g., shape memory alloys (SMAs) (Ashrafi et al., 2016; Oliveira et al., 2014; Poorasadion et al., 2015; Yu
et al., 2014), SMPs have many advantages in engineering applications, including highly flexible programming, tunable
properties, biodegradability, biocompatibility, light weight and low cost (Baghani et al., 2012; Hager et al., 2015; Leng et al.,
2009). Due to the superior performance of this kind of materials, SMPs have been widely used in artificial muscles (Marshall
et al., 2014; Ohm et al., 2010), Shaping tissue (Huang et al., 2013), functional textiles (Castano and Flatau, 2014; Hu and Chen,
2010), switchable/recoverable optics (Lee et al., 2014; Xu et al., 2013), self-healing materials (Li et al., 2012; Li and Shojaei,
2012; Shojaei and Li, 2014; Voyiadjis et al., 2011a, b), active aircraft equipment, aerospace structures (Behl et al., 2010; Hu
et al., 2012) and pattern transformation (He et al., 2015; Liu et al., 2015). With the increasing significant progress and
iu).
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deeper understanding of SMPs, they are holding a great importance in both academics and industrial fields, which is further
promoting the fundamental study of these types of materials. Compared with other depth-researched polymers (e.g., Nylon
(Farrokh and Khan, 2010), gels (Chester and Anand, 2010, 2011; Chester et al., 2015), Nitrile Butadiene Rubber (Khan et al.,
2010)), the thermomechanical mechanisms of SMPs are still not very clear. Therefore, it is imperative to develop more
suitable constitutive models for benefiting the exploitation of new-type SMPs and extending the understanding of the
complex thermomechanical mechanisms.

Generally, to develop new macro-constitutive models, two approaches have been mainly adopted for SMPs: viscoelastic
modeling and phase transition modeling. Viscoelastic modeling approach applies rheological models with time-dependent
and temperature-dependent property parameters (Hu et al., 2012). Thermoviscoelastic models commonly consist of spring
elements, dashpot elements and frictional elements. The viscosity, an important feature of polymers, has been introduced
into these viscoelastic models. Thus, the models can not only describe the SME of SMPs qualitatively, but also characterize
viscoelastic properties and the rate-dependent behaviors. Early use of the viscoelastic modeling approach was recommended
by Tobushi et al. (1997, 2001). Such simple models have recently been inherited and developed. Nguyen et al. (2008)
established a new approach to modeling amorphous SMPs with the assumption that structural and stress relaxation are
the primary molecular mechanisms. The feature of their work is that they combined the AdameGibbs model of structural
relaxation and a modified Eyring model of viscous flow into a thermoviscoelastic framework. Castro et al. (2010) proposed
another viscoelasticity model that couples the structural relaxation and temperature dependent viscoelastic behavior. Their
model could investigate the effects of thermal rates on shape memory behaviors of amorphous SMPs well. At the same time,
Srivastava et al. (2010) formulated a large-deformation constitutive theory tomodel the response of thermally actuated SMPs.
By expanding the early viscoelastic method, Ghosh and Srinivasa have developed a series of important constitutivemodels for
SMPs and obtained reasonable results (Ghosh and Srinivasa, 2011, 2013, 2014). To provide a simpler and more effective
prediction method for SMPs, a succinct three-element model is presented by Li et al. (2015). Even though it is simple, their
model is feasible to evaluate the thermomechanical properties of SMPs. Although all existing viscoelastic models above have
passably described some certain behaviors of SMPs, they are failed to physically relate the SME to glass transition which is a
very important phenomenon for the SMP materials. Thus, the models with a clearer physical implication should be
developed.

A phenomenological formulation for SMPs used in phase transition modeling approach has a clearer physical meaning
than the viscoelastic modeling. The phase transition modeling approach was first introduced by Liu et al. (2006). Their
continuum model used internal variables and constraints to describe the transition between the two phases. The different
kinds of phases are interchangeable and can transform into each other with the change of temperature. After that, many new
models have been developed by extending the work of Liu et al. (2006). Chen and Lagoudas (2008a, b) presented a nonlinear
constitutive model to describe the strain storage and stress recovery mechanism of SMPs under large deformation. At the
same time, Qi et al. (2008) proposed a three-phase transition model which is more accurate than that of Liu's et al. model. In
recent years, phase transition modeling approach has still been used by many other researchers to develop constitutive
models of SMPs, such as Reese et al. (2010), Volk et al. (2010), Long et al. (2010), Xu and Li (2010), Gilormini and Diani (2012),
Baghani et al. (2014), Gu et al. (2014), Moon et al. (2015) and Yang and Li (2015). The continuum models based on phase
transition in previous studies can reasonably reflect the glass transition and SME, however, this kind of approach defines the
constructive model without considering the viscosity and the time dependence. They did not include the time factor and
could not describe the creep and stress relaxation of polymers.

Although both of the two modeling approaches have great significance for the development of SMPs, their disadvantages
cannot be ignored. Under such circumstances, a reasonable model with clearer physical meaning which can better present
ample and comprehensive behaviors of SMPs should be imperatively developed. Here, we propose a novel viscoelastic model
based on multiplicative decompositions of the deformation gradient and also have taken the time factor into consideration.
This model has a clearer physical meaning and can successfully represent both the phase transition phenomenon and
viscoelasticity of SMPs. Unlike previous work, which are mainly based on a specific material and limited to small strain
(within 10%), our newly-proposed viscoelastic model unifies constitutive model with SME and can not only be used for
different materials, but also large strain problems. Good agreement between prediction results and existing experimental
data can be observed through the model validation.

The paper is presented as follows. In Section 2, we develop a novel viscoelastic model based on multiplicative de-
compositions of the deformation gradient. One-dimensional form of the proposed model is presented in Section 3. Then, we
give a summary of the progress of the parameters identification in Section 4 and use the introduced model to predict two
testing examples in Section 5. Finally, we draw concluding remarks in Section 6.

2. Constitutive model

2.1. General description of the constitutive model

The SME of SMPs is described by a phase transition at transformation temperature. As a kind of polymer materials, SMPs
are cross-linked structures which can maintain a macro shape of SMPs (Ratna and Karger-Kocsis, 2008) with different mi-
crostructures at different temperature ranges. When they are heated over the glass transition temperature Tg and an external
load is applied, the polymer chains would be reoriented and the cross-linked network would be dislocated which display as a
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macro deformation. Upon cooling and keeping the macro deformation, a kind of reversible phase (secondary cross-links) will
form among the oriented polymer network architectures. The secondary cross-links which are glassy domains for amorphous
SMPs, can fix the deformed shape and lay a good foundation for SME (Leng et al., 2011). As SMPs are reheated to the high
temperature, the secondary cross-links disappear and the macro shape will recover to original shape. To depict the phase
transition phenomenon and the formation and disappearance of the secondary cross-links, we propose a novel viscoelastic
model for SMPs based on multiplicative decompositions of the deformation gradient.

The biggest difference between the ordinary single structural viscoelastic model (e.g., Tobushi et al. (1997, 2001)) and the
proposed model is the different constitutive structures above and below the transformation temperature (as shown in Fig. 1).
When the temperature is higher than the glass transition temperature Tg, the SMPs are in the rubbery state. Under short-term
loadings, rubber is often treated as isotropic incompressible hyperelastic material, while in a long time loading, stress
relaxation and creep should be taken into account. Thus a simple model for SMPs at rubbery state is proposed, as shown in
Fig. 1(a). This model for SMPs at rubbery state is composed of two incompressible hyperelastic elements and a viscous
damping element (Fig. 1(a)). It represents the rubbery phase which is responsible for the permanent shape at a temperature
higher than Tg (i.e., rubbery phase branch).

As the temperature decreases below Tg, the material turns into the glassy state. In the glassy state, a kind of reversible
phase, the secondary cross-links may be formed in the local area of reticular structure of SMPs, which act as small locks. The
secondary cross-links lock the material's reticular structure to fix the temporal shape at a temperature lower than Tg. When
the temperature increases above Tg, the secondary cross-links disappear and permanent shape is recovered. The secondary
cross-links can be considered as springs in parallel with viscous dampers. Similarly, two spring elements and a viscous
damping element are introduced into the model to simulate the reversible phase e the secondary cross-links (as shown in
reversible phase of Fig. 1(b)) (i.e., reversible phase branch). The constitutive model for SMPs consists of a rubbery phase
branch and a reversible phase branch placed in parallel at T � Tg, as shown in Fig. 1(b).

In the model, the effect of thermal expansion, which is assumed to be independent of the mechanical behavior, is also
considered (as depicted in Fig. 1(a) and (b)).
2.2. Stress and deformation description of overall model

In the proposed model (as shown in Fig. 1), no matter in the rubbery state (T > Tg) or glassy state (T � Tg), the total
thermomechanical deformation gradient of the material F can be decomposed into (Holzapfel, 2000; Lu and Pister, 1975):

F ¼ FMFT (1)

where FM and FT are the mechanical and thermal deformation gradient, respectively.
When the temperature is higher than Tg, the SMPs are in the rubbery state. At this case, there only exists the rubbery phase

branch. Then, the total mechanical deformation gradient FM is expressed as:

FM ¼ FR2FV1 ¼ FR1 (2)

where FR1 and FR2 are the deformation gradients of hyperelastic elements and FV1 is the deformation gradient of viscous
element in the rubbery phase branch (as shown in Fig. 1(a)).

The total Cauchy stress of the model is:
Fig. 1. Schematic representation of the proposed constitutive model: (a) Constitutive model for SMPs at T > Tg (rubbery state); (b) Constitutive model for SMPs at
T � Tg (glassy state).
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s ¼ sR1 þ sR2 (3)

where sR1 and sR2 are the Cauchy stresses in the two hyperelastic elements. The Cauchy stress in the viscous element in the
rubbery phase branch sV1 ¼ sR2.

When the temperature is lower than Tg, the material enters the glassy state. In the glassy state, this model is composed of a
rubbery phase branch and a reversible phase branch arranged in parallel (Fig. 1(b)). In this state, Eq. (2) which describes the
deformation gradients in the rubbery phase branch is also valid. The mechanical deformation gradient of the reversible phase
branch Freversible is:

Freversible ¼ FE1FV2 ¼ FE2 (4)

where FE1 and FE2 are the deformation gradients of spring elements and FV2 is the deformation gradient of viscous element in
the reversible phase branch (shown in Fig. 1(b)).

The reversible phase branch is formed when the temperature decreases to Tg. As in some previous studies (Ge et al., 2012;
Rajagopal and Srinivasa, 1998a, b), it is assumed that the newly formed phase is formed in a stress-free (natural) configu-
ration. At T ¼ Tg, the newly formed reversible phase branch satisfies the condition Freversible ¼ 1. Thus, the relationship be-
tween FM and Freversible can be expressed as:

FM ¼ FM�TgFreversible (5)

where FM�Tg is the total mechanical deformation gradient of the model at T ¼ Tg.
In the glassy state, the total Cauchy stress of the model is rewritten as:

s ¼ sR1 þ sR2 þ sE1 þ sE2 (6)

where sE1 and sE2 are the Cauchy stresses in the two spring elements. The Cauchy stress in the viscous element in the
reversible phase branch sV2 ¼ sE1, and sV1 ¼ sR2 is also valid.
2.3. Rubbery phase

The stress and strain responses of SMPs are determined by the rubbery phase branch when there are no secondary cross-
links when T > Tg. As shown in Fig. 1(a), the rubbery phase branch consists of two incompressible hyperelastic elements and a
viscous damping element.

To depict the hyperelasticity of SMPs in rubbery state, we use the MooneyeRivlin model (Mooney, 1940; Rivlin, 1948)
which is widely applied in rubbery material for the constitutive relation of the two hyperelastic elements. The strain energy
density function for an incompressible MooneyeRivlin solid is (Mooney, 1940):

W ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ (7)

where C10 and C01 are two material constants, I1 and I2 are the first and second invariant of the left CauchyeGreen defor-
mation tensor B:

I1 ¼ traceðBÞ ¼ l21 þ l22 þ l23 (8)

I2 ¼ traceðB$BÞ ¼ ðl1l2Þ2 þ ðl2l3Þ2 þ ðl3l1Þ2 (9)

where B ¼ FFT and li are principal stretches. For an incompressible material, the volume ratio J ¼ detðFÞ ¼ l1l2l3 ¼ 1.
From the MooneyeRivlin model, the Cauchy stresses in the two incompressible hyperelastic elements can be given by:

sR1 ¼ �pR1Iþ 2CR1
10BR1 � 2CR1

01B
�1
R1 (10)

sR2 ¼ �pR2Iþ 2CR2
10BR2 � 2CR2

01B
�1
R2 (11)

where B�1
R1 ¼ BR1$BR1 � IR11 BR1 þ IR12 I, B�1

R2 ¼ BR2$BR2 � IR21 BR2 þ IR22 I, pR1 ¼ 2
3 ðCR1

10 I
R1
1 � CR1

01 I
R1
2 Þ, pR2 ¼ 2

3 ðCR2
10 I

R2
1 � CR2

01 I
R2
2 Þ. sR1

and sR2 are the stresses in the two hyperelastic elements (denoted by subscript R1 and R2), the material constants, invariants
and deformation tensors (denoted by subscript or superscript R1 and R2) represent their values in the two hyperelastic el-
ements, respectively. I is the second order unit tensor.

For the viscous damping element in the rubbery phase branch, we assume that the viscous damping is Newton fluid, the
viscous stretch rate of the viscous damping element DV1 can be obtained:
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DV1 ¼ 1
h1

MV1 (12)

where h1 is the viscosity of the viscous damping element in the rubbery phase branch and MV1 is the Mandel stress of this
element.

In the case of isotropic material behavior and evolution equations of the form of Eq. (12), only the symmetric part of the
viscous spatial velocity gradient is defined, LV1 ¼ F

�
V1F

�1
V1 .MV1 is independent on the rotation tensor and the spin tensor, then

we have:

DV1 ¼ F
�
V1F

­1
V1 (13)

In the viscous damping element, the relationships among the Mandel stress, the second Piola-Kirchoff stress SV1 and the

Cauchy stress sV1 are:

MV1 ¼ CV1SV1 and SV ¼ jV1F
�1
V1sV1F

�T
V1 (14)

where CV1 ¼ FT
V1FV1 is the right CauchyeGreen deformation tensor and jV1 ¼ 1=JV1 ¼ 1=detðFV1Þ.

2.4. Reversible phase (secondary cross-links)

When the material is in the glassy state (T � Tg), the model is composed of a rubbery phase branch and a reversible phase
branch. The rubbery phase branch has been established in section 2.3. In this section, we constitute the each part of the
reversible phase branch.

The viscous damping element in the reversible phase branch is also assumed as Newton fluid, thus, the viscous stretch rate
DV2 is:

DV2 ¼ 1
h2

MV2 (15)

where h2 is the viscosity of the viscous damping element in the reversible phase branch and MV2 is the Mandel stress of this
element.

Similar with Eqs. (13) and (14), we have:

DV2 ¼ F
�
V2F

�1
V2 (16)

MV2 ¼ CV2SV2 and SV2 ¼ jV2F
�1
V2sV2F

�T
V2 (17)

whereMV2, SV2 and sV2 are theMandel stress, second Piola-Kirchoff stress and Cauchy stress in the viscous damping element
in the reversible phase branch and jV2 ¼ 1=JV2 ¼ 1=detðFV2Þ.

For the two spring elements in the reversible phase branch, we introduce a corner mark i in parentheses to distinguish
parameters of the two spring elements (i.e., i ¼ E1 and i ¼ E2 correspond to element E1 and element E2, respectively) and
consider the Hencky finite hyperelastic equation to describe them. Hencky strain is a favored measure for large deformation
where principal directions of strains rotate (Onaka, 2010), then we have (Bruhns et al., 2002; Hencky, 1928):

ti ¼ LiðlnJiÞ1þ 2mihi (18)

whereLi and mi are the classical Lam�e elastic constants, ti is the Kirchhoff stress tensor, which can be expressed by the volume
ratio Ji and the Cauchy stress tensor si, ti ¼ Jisi, and hi is the Hencky's logarithmic strain tensor.

The Hencky's logarithmic strain tensor hi is defined as:

hi ¼
1
2
lnBi (19)

where Bi ¼ F iF
T
i .

For easier use of the Hencky equation, we rewrite Eq. (18) into component wise schemes. Suppose that the reference
configuration of any Hencky material point is at X, and the current configuration is at x. Then, let EX , EY and EZ be a reference
rectangular Cartesian basis and let ex, ey and ez be a current rectangular Cartesian basis. The deformation gradient F i is:

F i ¼ lixex5EX þ liyey5EY þ lizez5EZ (20)

where lix, l
i
y and liz are stretches in the three current coordinate axes directions, respectively.
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The left CauchyeGreen deformation tensor Bi ¼ F iF
T
i becomes:

Bi ¼
�
lix

�2
ex5ex þ

�
liy

�2
ey5ey þ

�
liz

�2
ez5ez (21)
The Hencky strain tensor hi can be obtained from its definition (Eq. (19)):

hi ¼ ln
�
lix

�
ex5ex þ ln

�
liy

�
ey5ey þ ln

�
liz

�
ez5ez (22)
The volume ratio Ji is:

Ji ¼ detðF iÞ ¼ lixl
i
yl

i
z (23)
For the isotropic Hencky material, the Cauchy stress tensor si is coaxial with the left CauchyeGreen deformation tensor Bi.
Therefore, si can be written as:

si ¼ sixex5ex þ siyey5ey þ sizez5ez (24)

where six, s
i
y and siz are the stress components in the three current coordinate axes directions, respectively.

The classical Lam�e elastic constants Li and mi in Eq. (18) can be replaced by:

Li ¼
niEi

ð1þ niÞð1� 2niÞ
and mi ¼

Ei
2ð1þ niÞ

(25)

where Ei is the Young's modulus and ni is the Poisson ratio.
Inserting Eqs. (22e25) into Eq. (18), we have:

8>>>>>>>><
>>>>>>>>:

Jis
i
x ¼

Ei
ð1� 2niÞð1þ niÞ

h
ð1� niÞln lix þ ni

�
ln liy þ ln liz

�i

Jis
i
y ¼ Ei

ð1� 2niÞð1þ niÞ
h
ð1� niÞln liy þ ni

�
ln lix þ ln liz

�i

Jis
i
z ¼

Ei
ð1� 2niÞð1þ niÞ

h
ð1� niÞln liz þ ni

�
ln liy þ ln lix

�i
(26)
Eq. (26) provides the component wise schemes of governing equations for the two spring elements (i.e., i ¼ E1 and i ¼ E2
correspond to element E1 and element E2, respectively).

2.5. Thermal deformation

Without loss of generality, we assumed that the thermal expansion and contraction effect are isotropic and independent of
the mechanical properties. Thus, the thermal deformation gradient FT becomes:

FT ¼ J1=3T 1 (27)

where JT is the volume ratio due to thermal deformation and is defined as:

JT ¼ VðTÞ
V0

(28)

where VðTÞ is the volume at temperature T and V0 is the reference volume at a selected reference temperature T0 (T0 > Tg).
For many polymers, the coefficient of thermal expansion (CTE) is different when the materials are in different states.

Supposed that in the rubbery state, the CTE of polymers is aR and in the glassy state, the CTE of polymers is aG. Then we can
get the volume ratio in different material states as follows.

When the material is in the rubbery state (T > Tg):

JT ¼ VðTÞ
V0

¼ ½1þ aRðT � T0Þ�3z1þ 3aRðT � T0Þ (29)
When the material is in the glassy state (T � Tg):
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JT ¼ VðTÞ
V0

¼ �1þ aR
�
Tg � T0

�þ aG
�
T � Tg

��3
z1þ 3aR

�
Tg � T0

�þ 3aG
�
T � Tg

�
(30)
2.6. Time-discrete form of the constitutive model

In this sub-section, we investigate the numerical solution of the proposed constitutive model. The total stress is
complicated because the deformation gradients of viscous elements are unknown except the mechanical deformation FM .
Therefore, the total stress and the variables are updated from the mechanical deformation history. We subdivide the time
interval of interest ½0; t� into sub-increments. For a generic advancement of time ½tn; tnþ1�, the stress and deformation tensors
are denoted by subscript n at time tn and n þ 1 at time tnþ1, respectively.

When the SMPs are in the rubbery state, from Eqs. (12e14) as well as sV1 ¼ sR2, we can obtain the relationship between
FV1 and FR2 as:

FR2LV1F
T
R2 ¼ BR2sR2

h1
(31)
Discretization of the evolution equation (31) by the so-called exponential mapping (Chen et al., 2014; Reese and
Govindjee, 1998) gives:

1
2
ln
�
Bnþ1
R2

�
¼ Dt

sn
R2
h1

þ 1
2
ln
�
Btrial
R2

�
(32)

Where Btrial
R2 ¼ ðFnþ1

M Þ$ðCn
V1Þ�1$ðFnþ1

M ÞT ¼ ðFnþ1
M Þ$ðFn

MÞ�1$ðBn
R2Þ$ðFn

MÞ�T$ðFnþ1
M ÞT is the coupling term of BR2 between the time

tn and the time tnþ1.
The stress of hyperelastic element R2 at the time tn is:

sn
R2 ¼ �pnR2Iþ 2CR2

10B
n
R2 � 2CR2

01
�
Bn
R2
��1 (33)
Substituting Eq. (33) into Eq. (32), BR2 can be solved with the initial condition that BR2ðt ¼ 0Þ ¼ I.
From Eq. (10) and FR1 ¼ FM , the stress of hyperelastic element R1 at the time tn is

sn
R1 ¼ �pnMIþ 2CR2

10B
n
M � 2CR2

01
�
Bn
M
��1 (34)
Thus, the iteration the total Cauchy stress of the model, in the rubbery state, is

sn ¼ sn
R1 þ sn

R2 (35)
When the SMPs are in the glassy state, from Eqs. (15e17) as well as sV2 ¼ sE1, we can obtain the relationship between FV2
and FE1 as:

FE1LV2F
T
E1 ¼ BE1sE1

h2
(36)
Similar with Eq. (32), discretization of the evolution equation (36) can be obtained as:

1
2
ln
�
Bnþ1
E1

�
¼ Dt

sn
E1
h2

þ 1
2
ln
�
Btrial
E1

�
(37)

Where Btrial
E1 ¼ ðFnþ1

reversibleÞ$ðCn
V2Þ�1$ðFnþ1

reversibleÞT ¼ ðFnþ1
reversibleÞ$ðFnþ1

reversibleÞ�1$ðBn
E1Þ$ðFn

reversibleÞ�T$ðFnþ1
reversibleÞT is the coupling term

of BE1 between the time tn and the time tnþ1, F
n
reversible ¼ F�1

M�TgF
n
M .

We come to the stress of spring element E1 from Eqs. (18) and (19) at the time tn:

sn
E1 ¼ 1

JnE1

�
LE1

�
ln JnE1

�
1þ 2mE1 ln

�
Bn
E1
�1=2� (38)
Substituting Eq. (38) into Eq. (37), BE1 can be solved with the initial condition that BE1ðT ¼ TgÞ ¼ I.
The stress of spring element E2 at the time tn can be obtained from Eqs. (18) and (19) as well as FE2 ¼ Freversible ¼ F�1

M�TgFM ,
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sn
E2 ¼ 1

Jnreversible

�
LE1

�
ln Jnreversible

�
1þ 2mE1 ln

�
Bn
reversible

�1=2� (39)
As a result, the iteration the total Cauchy stress of the model, in the glassy state, is

sn ¼ sn
R1 þ sn

R2 þ sn
E1 þ sn

E2 (40)
In this section, a three-dimensional (3D) thermomechanical constitutive model and corresponding elements of the model
have been established. To validate the model by comparing simulated results of the model with uniaxial tensile experiments,
we will apply the 3D model to uniaxial tensile state in section 3. Furthermore, the model parameters are determined and the
verification results are carried out in successive sections.

3. One-dimensional form for the proposed model

To verify our model, we compare the model simulation results with the experiments available in the literatures (Tobushi
et al., 1997, 2001; McClung et al., 2013). The experiments which implement the shape memory cycle are normally in uniaxial
tension state. Therefore, we provide a summary of one-dimensional form for the proposed model in this section.

3.1. The constitutive relations of each element of the proposed model in uniaxial tension

For the two hyperelastic elements which are considered as the incompressible MooneyeRivlin material, the Cauchy stress
under uniaxial elongation can be calculated as:

sR1 ¼ 2CR1
10

�
l2R1 � l�1

R1

�
þ 2CR1

01

�
lR1 � l�2

R1

�
(41)

sR2 ¼ 2CR2
10

�
l2R2 � l�1

R2

�
þ 2CR2

01

�
lR2 � l�2

R2

�
(42)

where lR1 and lR2 are the stretches of the two hyperelastic elements.
For the viscous damping element in the rubbery phase branch, apply Eqs. (12e14) to uniaxial tension, the Cauchy stress of

this viscous damping element can be obtained:

sV1 ¼ h1
lV1
�

lV1
(43)

where lV1 is the stretch and lV1
�

is the time derivative of stretch.
In the same way, the Cauchy stress of the viscous damping element in the reversible phase branch can also be obtained:

sV2 ¼ h2
lV2
�

lV2
(44)

where lV2 and lV2
�

are the stretch and the time derivative of stretch of the viscous damping element in the reversible phase
branch, respectively.

For the two spring elements, the constitutive relation of a 1D spring is (Sweeney et al., 1999; Wong et al., 2011):

sE1 ¼ E1 lnðlE1Þ (45)

sE2 ¼ E2 lnðlE2Þ (46)

where lE1 and lE2 are the stretches of the two spring elements.

3.2. Overall model description for uniaxial tension

First, we can obtain the total deformation from Eq. (1). Applying Eq. (1) to uniaxial tension, the total stretch of the model l
is obtained as:

l ¼ lMlT (47)

where lM is the total mechanical stretch and lT is the thermal stretch.
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At T > Tg, the constitutive model for SMPs is presented as Fig. 1(a), from Eqs. (2) and (3), the total mechanical stretch and
total Cauchy stress of the model can be obtained as:

lM ¼ lR2lV1 ¼ lR1 (48)

s ¼ sR1 þ sR2 ¼ sR1 þ sV1 (49)

where sR1, sR2 and sV1 are the Cauchy stresses in the three elements in the rubbery phase branch. The relationships between
these stresses and their respective deformation are given in Eqs. (41e43).

At T � Tg, the constitutive model for SMPs is presented as Fig. 1(b). In this state, Eq. (48) which describes the deformations
in the rubbery phase branch is also valid. From Eqs. (4) and (5), the mechanical stretch of the reversible phase branch lreversible
and total mechanical stretch lM can be expressed as:

lreversible ¼ lE1lV2 ¼ lE2 (50)

lM ¼ lM�Tglreversible (51)

where lM�Tg is the total mechanical stretch of the model at T ¼ Tg.
Because of the existence of reversible phase branch, the total Cauchy stress of the model is rewritten as:

s ¼ sR1 þ sR2 þ sE1 þ sE2 (52)
As previously mentioned, the above stresses of each part are given in section 3.1. It follows from the series arrangement of
the hyperelastic element (R2) and the viscous element (V1) in the rubbery phase branch that: sV1 ¼ sR2 and from the series
arrangement of the spring element (E1) and the viscous element (V2) in the reversible phase branch that: sV2 ¼ sE1.

4. Determination of the model parameters

In the proposed model, the parameters of six model elements and the CTE of materials need to be determined. In this
section, we give a summary of the progress of the parameters identification.

For an incompressible MooneyeRivlin material, the two C10 and C01 satisfy mR ¼ 2ðC10 þ C01Þ, where mR is the initial shear
modulus of hyperelastic element. mR can be replaced by mR ¼ ER

2ð1þnRÞ with ER the initial tensile modulus and nR the Poisson
ratio. For the two incompressible hyperelastic elements nR ¼ 0:5 and ER ¼ 6ðC10 þ C01Þ. Using an empirical formula
C01 ¼ 0:25C10, such that C10 ¼ ER=7:5; C01 ¼ ER=30. Therefore, we only need to determine the modulus of the two
hyperelastic elements ER1 and ER2, and then the MooneyeRivlin model constants can be obtained.

In general, there are six parameters ER1, ER2, h1, E1, E2 and h2 in the rubbery phase branch and the reversible phase branch
need to be identified. The modulus and tensile properties of SMPs are influence by the temperature. In the same way, the
above model parameters (ER1, ER2, h1, E1, E2 and h2) are dependent on the temperature. To determine these temperature-
dependent model parameters, we adopt the uniaxial tensile tests of SMPs at different temperatures which have been car-
ried out in many literatures.

At T > Tg, the model only has three elements in the rubbery phase branch which represent the primary cross-links of SMPs.
The parameters of the rubbery phase branch ER1, ER2 and h1 can be obtained by using an empirically definition (Tobushi et al.,
2001):

x ¼ xg exp
�
ax

	
Tg
T

� 1

�

(53)

where x denote the parameters ER1, ER2 and h1, xg is the value of x at temperature T¼ Tg, ax is the exponent for each coefficient
x.

Based on the uniaxial tensile tests of SMPs at a series of temperatures above Tg, the temperature-dependent parameters
ER1ðTÞ, ER2ðTÞ and h1ðTÞ would be determined.

When the temperature reaches Tg, the reversible phase branch displaying the secondary cross-links would be introduced
to themodel. It is reasonable to assume that the secondary cross-links start to form at T¼ Tg, and the newly formations would
be gradually increasedwith the temperature decreased continuously. To describe the continuous phase transition process, we
introduce a frozen fraction which can characterize the fraction of the frozen phase (Liu et al., 2006): ff ðTÞ ¼ 1� 1

1þcðTr�TÞn,
where Tr is the reference temperature, c and n are two undetermined parameters. The frozen phase is frozen because the
secondary cross-links lock thematerial's reticular structure. Themore the secondary cross-links lock, the larger the fraction of
the frozen phase becomes. Hence, we assume that the model parameters in the reversible phase branch and the frozen
fraction change approximately in the sameway. The three temperature-dependent parameters E1ðTÞ, E2ðTÞ, h2ðTÞ are defined
as:



Table 1
Model parameters in the rubbery phase branch adopted from experiments reported by Tobushi et al. (1997, 2001).

Coefficients T >343K 343K > T >313K T � 313K

CR1
10 ðMPaÞ 1.8 3:5829 exp

�
7:8706

	
313K
T � 1


�
3.5829

CR1
01 ðMPaÞ 0.45 0:8957 exp

�
7:8706

	
313K
T � 1


�
0.8957

CR2
10 ðMPaÞ 1.75 16:3245 exp

�
25:5312

	
313K
T � 1


�
16.3245

CR2
01 ðMPaÞ 0.4375 4:0811 exp

�
25:5312

	
313K
T � 1


�
4.0811

h1ðMPa*sÞ 964.078 11740:215 exp
�
28:5788

	
313K
T � 1


�
11740.215
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E1ðTÞ ¼ E1

 
1� 1

1þ cE1
�
Tg � T

�nE1

!
(54)

E2ðTÞ ¼ E2

 
1� 1

1þ cE2
�
Tg � T

�nE2

!
(55)

h2ðTÞ ¼ h2

 
1� 1

1þ ch2
�
Tg � T

�nh2

!
(56)

where E1, E2 and h2 are limited values of the three parameters, cE1, nE1, cE2, nE2, ch2 and nh2 are the undetermined parameters
for the three parameter definitions which can be determined by fitting the experimental data. At T ¼ Tg, the secondary cross-
links start to form and the values of the parameters are zero; as the temperature decreases, the more secondary cross-links
form and the values of the parameters will be higher and approach to the limited values gradually.

The model parameters in the rubbery phase branch have been determined before, so the temperature-dependent pa-
rameters E1ðTÞ, E2ðTÞ and h2ðTÞ can be determined by fitting the uniaxial tensile test data of SMPs at temperatures lower Tg.

The CTE of materials which is given in the literatures (Tobushi et al., 1997, 2001; McClung et al., 2013) and can be directly
measured by the DMA machine. In this study, we adopt the available CTE of materials from pertinent literatures.

5. Results and discussion

In this section, we use the proposed model to predict two testing examples and compare the model predicted results with
experimental data available in the literatures. The shape memory behavior of a polyurethane SMP with different pre-strain
levels and shape memory cycle prediction of Veriflex-E epoxy SMP for large strain are investigated to validate this model.

5.1. Shape memory behavior of SMP with different pre-strain levels

To test the stability of the model, we simulate thermomechanical tests with several pre-strain levels reported by Tobushi
et al. (1997, 2001). The parameters used in the model are shown in Tables 1 and 2. For this material, the CTE
aR ¼ aG ¼ 11:6� 10�5K�1. Figs. 2e4 show the stress-strain curves, stress-temperature curves and strain-temperature curves
in free strain recovery case with three different pre-strain εm, respectively. To compare model reproductions, the numerical
simulation results of Tobushi et al. (1997, 2001) are illustrated in Figs. 2e4, too. It shows that our present simulated results are
Table 2
Model parameters in the reversible phase branch adopted from experiments reported by Tobushi et al. (1997, 2001).

Coefficients T >328K 313K < T � 328K T � 313K

E1ðMPaÞ 0 277758:5

"
1� 1

1þ1:87721�10�5ð328K�TÞ1:81889

#
716.54324

E2ðMPaÞ 0 1753:63504

"
1� 1

1þ3:38226�10�4ð328K�TÞ1:16742

#
13.84114

h2ðMPa*sÞ 0 41506500

"
1� 1

1þ1:05303�10�5ð328K�TÞ1:99305

#
96284.99663



Fig. 2. Stress-strain curves: (a) εm ¼ 2:4% ; ðbÞ εm ¼ 4% ; ðcÞ εm ¼ 10%. Experiments reported by Tobushi et al. (1997) and Tobushi et al. (2001).
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better according with the experimental observations than the predictions of Tobushi et al. (1997, 2001), indicating its
feasibility to reproduce shape memory behavior of SMP with different pre-strain levels.
5.2. The shape memory cycle prediction for large strain (more than 10%)

In previous research work, most constitutive models of SMPs are based on a specific material and limited to small strain
behavior which narrow the application of models. To show the wide applicability of our model, we perform the shape
memory cycle prediction of anothermaterial (Veriflex-E epoxy SMP) for large strain (larger than 10%) and compare it with the
experimental results in McClung et al. (2013). The experimental details can be found in McClung et al. (2013) and the model
parameters used in this case are shown in Tables 3 and 4. For this material, aR ¼ 2:893� 10�4K�1 and aG ¼ 3:498� 10�5K�1.

In the experiment, the temperature of the SMP sample is artificially controlled. The temperature history over time in the
shapememory cycle is presented in Fig. 5. To better understand the shapememory behavior, we divide a shapememory cycle
into 5 processes based on the change of temperature (as shown in Figs. 5 and 6). In the process 1, the SMP sample is pre-
tensioned to 60% strain and the strain is maintained for a while at 130 �C. In the process 2, the sample is cooled down to
25 �C while the constant strain is maintained. After cooling, the constant strain is held at 25 �C for 1 h in the process 3. In the
initial stage of the process 4, the strain constraint condition is rapidly removed from the sample at 25 �C. Then, the sample is
reheated from 25 �C to 130 �C. After the heating, the temperature is held at 130 �C for 1 h in the process 5.



Fig. 3. Stress-temperature curves: (a) εm ¼ 2:4% ; ðbÞ εm ¼ 4% ; ðcÞ εm ¼ 10%. Experiments reported by Tobushi et al. (1997) and Tobushi et al. (2001).
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Fig. 6 shows the comparison between the model prediction and experiment in free recovery shape memory cycle. From
the comparison, we can see that the modeling results agree fairly well with the experimental data in reproducing the stress
history and strain evolution. But there are some small discrepancies: (1) During the process 2, there is time-lag of the
experiment with modeling results in stress evolution. And at the end of the process 2, the stress value of the model is larger
than the experimental one. (2) During the process 3, the modeling stress decreases a little while the experimental stress
continues to increase slowly. (3) During the late-stage of the process 4 and the initial stage of the process 5, there is time-lag of
the experiment with modeling results in strain evolution.

The above discrepancy occurs in the processes of temperature change or at the beginning of temperature change
completion, and the discrepancy mainly appears as time-lag of the experiment with modeling results. So we make a
reasonable hypothesis that the practical temperature lags behind monitor temperature in time due to the realization of
thermal equilibrium. By assuming this, we can see that in the process 2, the sample is cooled. Themonitor temperaturewhich
is used in model simulation is always lower than practical temperature of sample and the modeling stress would be always
higher than experimental stress. In the process 3, the sample is held at constant strain and constant temperature. In this
holding process, the strain frozen and thermal deformation stop changing while the stress relaxation continue to exist. Thus,
the stress should decrease in theory. In the experiment, at the end of the process 2, the actual temperature is not cooled to
25 �C yet. It would continue to drop to 25 �C in the holding process 3. Therefore, we observed that the experimental stress
continues to increase slowly while the modeling stress decreases. Similarly, in the reheating process 4, the practical tem-
perature lags behind monitor temperature and the strain recovery of experimental observation lags behind the modeling
results.



Fig. 4. Strain-temperature curves: (a) εm ¼ 2:4% ; ðbÞ εm ¼ 4% ; ðcÞ εm ¼ 10%. Experiments reported by Tobushi et al. (1997) and Tobushi et al. (2001).
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To revise these discrepancy caused by thermal lag, wemake a left-ward shift (0.23 h) in the experimental stress-time curve
and strain-time curve (as shown in Fig. 7). We mainly focus on the stress evolution in the processes 2 - 3 and the strain
recovery in the processes 4 - 5. A good agreement between the model predictions and shifted experimental data is presented
in Fig. 7, proving that our model can effectively predict the shape memory behavior of Veriflex-E epoxy SMP for large strain.
Table 3
Model parameters in the rubbery phase branch adopted from experiments reported by McClung et al. (2013).

Coefficients T >368K T � 368K

CR1
10 ðMPaÞ 0:639216 exp

�
24:86407

	
368K
T � 1


�
0.639216

CR1
01 ðMPaÞ 0:159804 exp

�
24:86407

	
368K
T � 1


�
0.159804

CR2
10 ðMPaÞ 1:660024 exp

�
94:18957

	
368K
T � 1


�
1.660024

CR2
01 ðMPaÞ 0:415006 exp

�
94:18957

	
368K
T � 1


�
0.415006

h1ðMPa*hÞ 0:16854 exp
�
24:70961

	
368K
T � 1


�
0.16854



Table 4
Model parameters in the reversible phase branch adopted from experiments reported by McClung et al. (2013).

Coefficients T >368K T � 368K

E1ðMPaÞ 0 1197:12235

"
1� 1

1þ3:59017�10�10ð368K�TÞ13:4335

#

E2ðMPaÞ 0 2854:71345

"
1� 1

1þ8:94004�10�4ð368K�TÞ2:24521

#

h2ðMPa*hÞ 0 171:6827

"
1� 1

1þ4:19473�10�5ð368K�TÞ4:54163

#

Fig. 5. Temperature-time history of the SMP sample in the shape memory cycle. Experiments reported by McClung et al. (2013).
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5.3. Multiaxial loading case

In this sub-section, we simulate a multiaxial loading case (equal-biaxial force) to show the full capabilities of the proposed
model undermultiaxial loading path. The similar important works were investigated by Baghani et al. (2012). In this example,
the main parameters as shown in Tables 1 and 2, are adopted. In the first loading step, the strains ε11 ¼ 0:1 and ε22 ¼ 0:1 with
strain rate of 8:33� 10�3s�1 are applied at an elevated temperature Th. Then, we hold the strains (ε11 ¼ 0:1, ε22 ¼ 0:1) and
decrease the temperature to a lower temperature Tl with cooling rate of 0.133 K/s. In third step, the strain constraint con-
ditions are removed. After that, the specimen is in temporary shape. Finally, the SMP specimen is reheated to high tem-
perature Th under the free strain conditionwith heating rate of 0.0667 K/s. Through reproduction of above four loading steps,
the stress-temperature curves, stress-strain curves and strain-temperature curves under equal-biaxial force case are depicted
in Fig. 8.

From Fig. 8(a), it can be observed that the stresses (s11, s22) decrease in the early stage of cooling, then, increase around Tg
and almost remain constant in the vicinity of Th . It happens due to that the stress responses of the SMP are affected by three
factors: stress relaxation, thermal strains and phase transition. Further studying Fig. 8(b) and c, we can find that after
unloading, a temporary shape is maintained; and after reheating, some residual strains are remained in SMP.



Fig. 6. The comparison between the model prediction and experiment in free recovery shape memory cycle: (a) the curves of stress-time, (b) the curves of strain-
time. Experiments reported by McClung et al. (2013).

Fig. 7. The comparison between the model prediction and shifted experimental data: (a) the curves of stress-time, (b) the curves of strain-time. The left-ward
shift value is 0.23 h. Experiments reported by McClung et al. (2013).
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6. Concluding remarks

In present study, a novel viscoelastic model for shape memory polymers (SMPs) based on multiplicative thermoviscoe-
lasticity is established for SMPs and is used to reproduce the SME of different shape memory materials. The simulated results
are compared with available experimental results and a remarkable consistency between the model prediction and exper-
imental data can be obtained. From the results and discussion, it demonstrated that the present model shows several ad-
vantages comparing with previous models:



Fig. 8. Simulation of free recovery shape memory cycle for equal-biaxial force case: (a) the stress-temperature curves, (b) stress-strain curves, (c) strain-
temperature curves.
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(1) In previous researchwork, there is still a lack of unified constitutivemodel with shapememory effect. At the same time,
most studies of SMPs are only based on a specific material. While our model can be used to various SMPs. The pa-
rameters of the model can be easily determined by the corresponding experimental results.

(2) Many models are limited to small strain (within 10%). The current model is also able to simulate the behavior of large
strain case.
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