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a b s t r a c t 

The present work investigates the deformation characteristics of a temperature sensi- 

tive hydrogel. The state of mechanical and chemical equilibrium is first formulated via a 

variational approach, upon which a finite element model is developed and implemented 

through user-defined material subroutine UMAT in the commercial software ABAQUS. We 

will show that this UMAT implementation allows for more versatility in the imposition of 

initial conditions over existing models developed using UHYPER subroutine. Furthermore, 

we propose an approach to simulate the transient swelling process of a temperature sensi- 

tive hydrogel. This is achieved through the simultaneous application of three user-defined 

subroutines, which model the constitutive properties of the gel, as well as the diffusion of 

solvent molecules within the gel. Several numerical case studies are presented to verify the 

present model developed with experimental data, as well as to illustrate its capabilities in 

simulating a wide array of complex gel phenomena, including surface creasing, bifurcation 

and buckling of gels. Through these numerical examples, we are able to gain deeper in- 

sights, and explain some of the new interesting physical phenomena observed in reported 

experiments. 

© 2016 Elsevier Ltd. All rights reserved. 
1. Introduction 

Crosslinking through covalent bonds, flexible long- 

chained polymers form a three-dimensional elastomeric 

gel network which swells after imbibing the solvent. The 

strong covalent bonds enable the gel structure to main- 

tain its shape, while the polymer network and solvent 

are aggregated by weak bonds that enable transport. With 

various functional groups along the polymer chain, a hy- 

drogel could deform in response to different stimuli such 

as ionic concentration ( Lai and Li, 2011 ), temperature 
∗ Corresponding author. Tel.: + +86 29 82664354. 

E-mail address: zishunliu@mail.xjtu.edu.cn , zishunliu@nus.edu.sg 

(Z. Liu). 
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0167-6636/© 2016 Elsevier Ltd. All rights reserved. 
( Drozdov, 2015 ), forces, pH values ( De and Aluru, 2004; 

Marcombe et al., 2010 ), electrical field and light ( Toh et al., 

2014a ). In addition to the stimuli-responsive property, the 

capability of being large and reversible deformation and 

biocompatibility assures hydrogel as an attractive material 

choice in diverse applications. Such applications include 

sensors, actuators and micro-valves, drug delivery devices 

and tissue engineering. 

These promising applications, together with some in- 

teresting phenomena, such as buckling, pattern transfor- 

mation and surface instabilities have motivated a large 

number of theoretical and numerical studies on hydro- 

gels. In recent development of nonlinear field theories 

( Chester and Anand, 2010, 2011; Hong et al., 2010; Hong 

et al., 2008 ), it is assumed that gels generally undergo two 

http://dx.doi.org/10.1016/j.mechmat.2016.02.018
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modes of deformation. In the first mode, the gel changes

its shape rapidly, but maintains a constant volume through

the stretching of polymer chains and local rearrangement

of solvent molecules. Thus, the gel behaves like an incom-

pressible elastomer and it is often treated as an instanta-

neous process. The second mode involves long-range trans-

port of small molecules, allowing the gel to swell or shrink.

This mode is a slow and size-dependent process. 

Numerical methods, such as the finite element method

(FEM), are normally adopted to study deformation be-

haviors of gels. In earlier studies of deformation of gels,

most numerical simulation works focus on the equilib-

rium states ( Ding et al., 2013; Hong et al., 2009; Kang

and Huang, 2010; Marcombe et al., 2010; Toh et al., 2013;

Toh et al., 2014a ). For transient problems of gels, differ-

ent numerical approaches are used to conduct transient

analysis of hydrogels. One such approach is using COM-

SOL MULTIPHYSICS software. Another numerical approach

is to develop special purposed user-defined elements using

the UEL subroutine in ABAQUS. Chester et al. (2015) formu-

lated an FEM for transient analysis of concurrent large de-

formation and mass transport in gels using this approach.

One other numerical approach is to make use of the simi-

larities in the governing equations between diffusion and

heat transfer to simulate mass diffusion as an equiva-

lent heat transfer process. Following this approach, Toh et

al. developed and implemented the numerical method to

study the transient behavior of polymeric gels ( Toh et al.,

2013 ) and pH-sensitive hydrogels ( Toh et al., 2014b ). 

Recently, Ding et al. (2013) modeled the large deforma-

tion of temperature-sensitive hydrogels and implemented

it through user-subroutine UHYPER in ABAQUS. However,

due to the built-in constraints of UHYPER, the usage of

UHYPER is limited to isotropic initial conditions ( Kang and

Huang, 2010 ). In this present study, we implement the

finite element model using a more robust subroutine to

study the equilibrium state and highlight its advantage

over existing methods through numerical examples. 

The deformation kinetics of temperature-sensitive hy-

drogel consist of polymer chains stretching, diffusion of

solvent molecules, and heat transfer process. In the present

study, a method to perform transient analysis for swelling

of temperature-sensitive hydrogel is formulated and imple-

mented with the combination of several subroutines. Al-

though it is possible to formulate user-defined elements

(UEL) for the transient simulation of temperature-sensitive

gel swelling ( Chester and Anand, 2011 ), we note that the

process of developing a functional UEL requires a sub-

stantial amount of effort and the implementation is not

straightforward. In our proposed method, the implemen-

tation does not involve development of new elements by

coupling mass diffusion, heat transfer and deformation in

FEM. It is expected that this approach can be employed in

a more user-friendly manner. 

The paper is organized as follows. In Section 2 , we

derive governing equations and equilibrium conditions

for a gel undergoing inhomogeneous deformation using

a variational approach. Adopting an explicit free energy

model, constitutive equations and chemical potential of

solvent molecular within a gel are derived and discussed

in Section 3 . Finite element methods for static and tran-
sient analysis are proposed and implemented in Section 4 .

Section 5 presents numerical examples to verify the cor-

rectness and highlight the advantages of our method. To

demonstrate the reliability of our method for transient

analysis, in Section 6 , we compare the simulation results

with experimental results and validate the assumption

made in Section 4.2 . In Section 7 , we apply our proposed

numerical methodology to explain experimental observa-

tions such as substrate-controlled creasing, bifurcation, and

buckling of swelling gels. The last section contains our con-

cluding remarks. 

2. Governing equations and equilibrium conditions 

Here we adopt a variational approach in deriving the

governing equations and equilibrium conditions when a gel

undergoes isothermal inhomogeneous large deformation.

An analogous variational approach was proposed by Kang

and Huang (2010) . We did not specifically write out the

first and second thermodynamic principles like the work

of Chester and Anand (2011) . The reason is that neither

of the two principles is used in the static and transient

analysis. Only an isothermal process is considered, as it is

well known that thermal equilibrium implies a homoge-

nous temperature field. 

Consider a hydrogel body (reference state) of volume

�0 enclosed by a surface �0 as shown in Fig. 1 . When

the hydrogel is immersed in a solvent of chemical poten-

tial ˜ μ, solvent molecules can enter or leave the polymeric

gel across the surface �. In the system, the gel is subjected

to a body force b i and surface traction t i . In addition, the

surface � may be mechanically constrained or chemically

isolated from the solvent. We regard the dry gel states as

the reference state, and the deformation gradient F is de-

fined as the mapping from the reference state coordinates

X to the current state x . 

F iK = 

∂ x i ( X ) 

∂ X K 

(1)

To obtain the equilibrium condition, consider an in-

finitesimal process where in a short time δt , the displace-

ment field in the reference coordinate is denoted by δx ( X )

and the work done δH by the environment in the reference

coordinates is expressed as 

δH = 

∫ 
�0 

B i δx i d V 0 + 

∫ 
�0 

T i δx i d S 0 + 

∫ 
�o 

˜ μδCd V 0 (2)

where C is the nominal volumetric concentration of the

solvent molecules, which is defined as the number of sol-

vent molecules in the current configuration per unit vol-

ume in the reference state. dV o and dS o are the differential

volume and area respectively in the reference frame. B i and

T i are the nominal body force and nominal surface traction,

which are defined as the body force in the current state

per unit volume in the reference state and surface traction

in the current state per unit area in the reference state re-

spectively. 

Assuming a general form of the nominal free energy

density function W ( F , C ) at a certain temperature, the vari-

ation of energy of the hydrogel, δU is 

δU = 

∫ 
�o 

δW d V o = 

∫ 
�o 

∂W 

∂ F iK 
δF iK d V o + 

∫ 
�o 

∂W 

∂C 
δCd V o (3)
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Fig. 1. A dry polymeric gel in reference state when placed in contact with a solvent deforms to current state. 
Integrating by parts to evaluate the first term, we get 

δU = 

∫ 
�0 

∂ 

∂ X K 

(
∂W 

∂ F iK 
δx i 

)
d V o −

∫ 
�0 

∂ 

∂ X K 

(
∂W 

∂ F iK 

)
δx i d V o 

+ 

∫ 
�o 

∂W 

∂C 
δCd V o (4) 

Applying divergence theorem to the first term of Eq. (4) , 

we obtain 

δU = 

∫ 
�0 

∂W 

∂ F iK 
N K δx i d S o −

∫ 
�0 

∂ 

∂ X K 

(
∂W 

∂ F iK 

)
δx i d V o 

+ 

∫ 
�o 

∂W 

∂C 
δCd V o (5) 

The principle of virtual work requires that 

δU = δH (6) 

Substituting Eqs. (2) and ( 5 ) into Eq. (6) yields ∫ 
�0 

(
∂W 

∂ F iK 
N K − T i 

)
δx i d S o −

∫ 
�o 

(
∂ 

∂ X K 

∂W 

∂ F iK 
+ B i 

)
δx i d V o 

+ 

∫ 
�o 

(
∂W 

∂C 
− ˜ μ

)
δCd V o = 0 (7) 

Eq. (7) holds for arbitrary changes δx i and δC and so 

the quantity in each pair of parentheses vanishes. Thus we 

arrive at the equilibrium conditions. 

∂ 

∂ X K 

∂W 

∂ F iK 
+ B i = 0 in �0 (8) 

(
∂W 

∂C 
− ˜ μ

)
= 0 in �0 (9) 

∂W 

∂ F iK 
N K − T i = 0 on �0 (10) 

The nominal stress S iK may be defined as the work con- 

jugate of the deformation gradient, i.e. 

S iK = 

∂W 

∂ F iK 
(11) 

In such case, Eqs. (8) and (10) can be interpreted as 

the conditions for mechanical equilibrium. From Eq. (9) , 

we note that the chemical potential of solvent molecules 
inside gel μ can be defined as the work conjugate of the 

solvent concentration, i.e. 

μ= 

∂W 

∂C 
(12) 

Eqs. (9) and ( 12 ) stipulate that the chemical poten- 

tial of solvent with the gel is homogenous and equal to 

the chemical potential of the external solvent during the 

equilibrium state. Although in the transient analysis, the 

chemical potential is not homogeneous, Eq. (12) has pro- 

vided a way to evaluate the chemical potential of solvent 

molecules inside the gel for every elementary volume. 

3. Free energy model and constitutive equations 

Based on the work of Cai and Suo (2011) , the field the- 

ory of temperature-sensitive hydrogels is further refined 

here. Since the crosslink density is typically very low, we 

assume that the impact of crosslink density on the inter- 

action between the monomers and the solvent molecules 

is negligible. Hence the Helmholtz Free energy of the hy- 

drogel is considered to consist of (i) the stretching of the 

network and (ii) the mixing of the polymer and the sol- 

vent independently. Therefore, the free energy density of 

gel can be written as: 

W = W stretch (F ) + W mix (C, T ) (13) 

where W stretch is due to the stretching of the network, and 

W mix is the energy due to the mixing of the polymers and 

solvent. 

We assume that the individual long polymers and the 

individual small molecules are incompressible. The condi- 

tion of molecular incompressibility is expressed as ( Hong 

et al., 2008 ) 

det (F ) = 1 + νC (14) 

The condition of molecular incompressibility can 

be reinforced as a constraint by adding a term 

�[ 1 + v C − det (F ) ] to the free energy density func- 

tion, where � is the Lagrange multiplier, which can also 

be interpreted as the osmotic pressure as discussed by 

Hong et al.(2008) . The Lagrange multiplier is used so that 

F and C can be treated as independent variables, which 

is consistent with the framework in Section 2 . Hence, the 
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free energy density W takes the form: 

 = W stretch (F ) + W mix (C, T ) + �[ 1 + v C − det (F ) ] (15)

A general expression for � can be obtained by substi-

tuting Eq. (15) into Eq. (12) 

� = 

1 

v 

(
μ − ∂ W mix 

∂C 

)
(16)

The expression obtained here is consistent with the

works of Hong et al. (2008) and Cai and Suo (2012) . 

The free energy due to the stretching of a network of

polymer is taken to be ( Flory, 1953 ) 

 stretch (F ) = 

1 

2 

NkT [ F ik F ik − 3 − 2 ln ( det F ) ] (17)

where N is the number of polymer chains per unit dry vol-

ume, kT the temperature in terms of energy, and ν the vol-

ume per water molecule 

The energy of mixing of the long polymer with the sol-

vent is taken to be 

 mix (C, T ) = kT 

[ 
C ln 

(
νC 

1 + νC 

)
+ 

χC 

1 + νC 

] 
(18)

where C is the nominal concentration of solvent water

molecules, and χ the Flory-interaction parameter, which

measures the strength of pairwise interactions between

species. 

The parameter χ is fitted to experimental data in the

following form ( Huggins, 1964 ): 

χ(T , φ) = χ0 + χ1 φ (19)

where χ0 = A 0 + B 0 T , χ1 = A 1 + B 1 T and φ = 1 / ( 1 + νC ) .

The symbol φ represents volume fraction of the polymer

in the hydrogel. The values A o , A 1 , B o and B 1 vary for dif-

ferent monomers. 

For a temperature-sensitive gel, the exact form of � can

be obtained by substituting Eq. (18) into Eq. (16) to give 

� = 

kT 

v 

[
μ

kT 
− ln 

( v C 
1 + v C 

)
− 1 

1 + v C 
− χ0 

(1 + v C) 
2 

− (1 − v C) χ1 

(1 + v C) 
3 

]
(20)

Using Eq. (14) to eliminate C , Eq. (20) is converted to 

� = 

kT 

ν

[ 
μ

kT 
− ln 

(
J − 1 

J 

)
− 1 

J 
− χ0 − χ1 

J 2 
− 2 χ1 

J 3 

] 
(21)

where J = det (F ) is the swelling ratio of the gel. 

Eq. (20) and Eq. (21) relate the osmotic pressure with

the solvent molecules concentration and deformation gra-

dient respectively. The nominal stress is obtained by sub-

stituting Eq. (15) into Eq. (11) 

S ik = 

∂ W stretch 

∂ F ik 
− �J H ik = NkT ( F ik − H ik ) − �J H ik (22)

Note that we have used the mathematical relation
∂ J 

∂ F ik 
= J H ik in order to derive Eq. (22) , where H is the trans-

pose of F −1 . 

The true stress can be obtained through the relation 

J σi j = S ik F jk (23)
By substituting Eq. (22) into Eq. (23) , we obtain 

σi j = 

NkT 

J 
( F ik F jk − δi j ) − �δi j (24)

Further substitution of Eq. (21) into Eq. (24) yields an

explicit form of the true stress 

σi j = 

NkT 

J 
( F ik F jk − δi j ) + 

kT 

ν

[ 
ln 

(
J − 1 

J 

)
+ 

1 

J 

+ 

χ0 − χ1 

J 2 
+ 

2 χ1 

J 3 

] 
δi j −

μ

ν
δi j (25)

Eq. (25) relates the true stress to the deformation gradi-

ent. Rewriting Eq. (25) , a general expression for the chemi-

cal potential for water molecules within the gel is obtained

as 

μ = 

NkT ν

3 J 
(I−3) + kT 

[ 
ln 

(
J − 1 

J 

)
+ 

1 

J 
+ 

χ0 − χ1 

J 2 
+ 

2 χ1 

J 3 

]
− ( σ11 + σ22 + σ33 ) v 

3 

(26)

where I = F ik F ik . 

Using the equilibrium conditions given by Eq. (9) , the

analytical solution for a temperature-sensitive gel in a so-

lution of chemical potential ˜ μ is 

μ = ˜ μ (27)

where the expression for μ is given by Eq. (26) 

4. Finite element formulation 

4.1. Static analysis 

It can be seen from Eq. (17) that when J = 1 , the

free energy density is singular. This singularity can be

addressed by selecting any reference state with J > 1

( Hong et al., 2009 ). In our previous study on temperature-

sensitive hydrogel ( Ding et al., 2013 ), an isotropic swelling

state was chosen as the initial state. As a result, it could

not be used to study the deformation with an anisotropic

initial state. In the present study, we choose an initial state

with a deformation gradient in the form of: 

F 0 = 

⎡ 

⎣ 

λ0 , 1 0 0 

0 λ0 , 2 0 

0 0 λ0 , 3 

⎤ 

⎦ (28)

By letting F ′ be the deformation gradient relative to the

chosen reference state, the deformation gradient F is then

expressed as follows: 

F = F ′ F 0 (29)

In the present study, we will use subroutines in the

commercial software ABAQUS to implement the above

derived formulation. There are two options offered by

ABAQUS to specify the nonlinear constitutive behavior of

a hydrogel as user-defined materials, i.e. subroutines UHY-

PER and UMAT. The former (UHYPER) has been success-

fully implemented ( Ding et al., 2013 ). However, UHYPER

implementation is restricted to isotropic initial conditions.

To circumvent this limitation, we implement our current fi-

nite element model using UMAT, which requires definition
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of the true stress ( Eq. 25 ) and tangent modulus tensor C ijkl . 

The tangent modulus can be defined through the variation 

in the Kirchhoff stress 

δ(J σi j ) = J C i jkl δD kl + J( σk j δW ik − σik δW k j ) (30) 

where the tensors δD and δW are the virtual rate of defor- 

mation and virtual spin tensor respectively, defined as: 

δD = Sym (δF · F −1 ) (31) 

δW = Skew (δF · F −1 ) (32) 

By using Eq. (25) , the variation of the Kirchhoff stress is 

calculated as follows 

δ(J σi j ) = N kT 

{
2 

3 

J −
1 
3 δJ + J 

2 
3 δ ˜ B i j + 

δi j 

Nν

[ 
− μ

kT 
+ 

1 

J − 1 

+ ln 

(
J − 1 

J 

)
− 4( A 1 + B 1 T ) 

J 3 

+ 

( A 0 − A 1 ) + ( B 0 − B 1 ) T 

J 2 

]
δJ 

}
(33) 

It can be shown mathematically that 

δJ = JδD kk (34) 

δ ˜ B i j = T i jkl 

(
δD kl −

δkl 

3 

δD kk 

)
+ 

˜ B k j δW ik − ˜ B ik δW k j (35) 

where the fourth order tensor T is defined as 

T i jkl = 

1 

2 

(
˜ B jl δik + 

˜ B ik δ jl + 

˜ B jk δil + 

˜ B il δ jl 

)
(36) 

Substituting Eq. (34) and Eq. (35) into Eq. (33) , an ex- 

plicit expression for the tangent modulus tensor at the cur- 

rent state is obtained as 

 i jkl = N kT 

{ 

J −
1 
3 T i jkl + 

1 

N v 

[ 
− μ

kT 
+ 

1 

J − 1 

+ ln 

(
J − 1 

J 

)
− 4( A 1 + B 1 T ) 

J 3 
+ 

( A 0 − A 1 ) + ( B 1 − B 0 ) T 

J 2 

]
δi j δkl 

}
(37) 

With Eq. (25) and Eq. (37) , we define the material 

model using user-defined subroutine UMAT in ABAQUS. 

The free energy density function introduces five mate- 

rial parameters A 0 , A 1 , B 0 , B 1 and Nv . The values of A 0 ,

A 1 , B 0 and B 1 depend on the type of monomers, while Nv 

is a dimensionless measure of the polymer crosslink den- 

sity in the dry network. The values of these parameters 

for poly(N-isopropyl acrylamide) (PNIPAM) are provided by 

Afroze et al. (20 0 0) to be 

A 0 = −12 . 947 , A 1 = 17 . 92 , B 0 = 0 . 04496 / K , B 1 

= −0 . 0569 / K (38) 

where K is the unit of temperature in Kelvin. 

We adopt the above properties of PNIPAM gels and 

set Nv = 0 . 01 in the static numerical examples presented 

herein. To fully define the material in the subroutine, we 

also need to provide the initial temperature T 0 , the initial 

chemical potential of the external solution μ0 , and the cor- 

responding swelling ratios λ0, 1 , λ0, 2 , λ0, 3 in the x, y, z di- 

rections respectively. For an equilibrium state, these values 

need to satisfy Eq. (25) . 
4.2. Transient analysis 

Recently, modeling the mass transport in gel as an 

equivalent heat transfer process has attracted much at- 

tention for its simplicity and wide applicability. However 

this method cannot be directly applied to temperature- 

sensitive gels as the kinetics of a temperature sensitive hy- 

drogel is driven by two separate processes: heat transfer 

and mass diffusion. A different method is to define user 

elements ( Chester et al., 2015 ). Alternatively, noting that 

the heat transfer process is usually much faster than the 

mass diffusion process ( Chester, 2011 ), it is an appropri- 

ate approximation to regard the heat transfer process as 

an instantaneous process. After which, the swelling kinet- 

ics of the gel structure may be regarded as the migration of 

solvent molecules within and across the material bound- 

ary isothermally. An illustration of this approximation is 

given in Fig. 2 . The dynamic deformation process ( 1 ) is 

generally referring to the process from state A to state C, 

during which both the temperature and chemical poten- 

tial of the solution changes. Owing to the assumption that 

heat transfer is a much faster process, we decompose the 

above process into two consecutive steps: the first being 

heat transfer, represented by process ( 2 ) and second be- 

ing mass diffusion, represented by process ( 3 ). A virtual 

intermediate state B is defined as the state at which pro- 

cess ( 2 ) has finished while process ( 3 ) has not started. In

this state, the temperature in the gel is homogenous and 

equal to the temperature of the surroundings, whereas the 

chemical potential is also homogenous but different from 

the surrounding solutions. The exact value of the chemical 

potential may be calculated by Eq. (26) . As mentioned ear- 

lier, since process ( 2 ) is much faster, and the gel material 

does not undergo much deformation, we will only model 

process ( 3 ) as an approximation to process ( 1 ). 

During the mass diffusion process, the flux relates to 

the gradient of chemical potential by the following equa- 

tion ( Hong et al., 2008 ) 

j i = − cD 

kT 

∂μ

∂ x i 
= − cD 

∂ μ̄

∂ x i 
(39) 

where c = C/J is the current solvent concentration, D 

the diffusion coefficient, and μ̄ = μ/ kT the dimensionless 

chemical potential. 

The conservation of the mass may be written as ∫ 
V 

1 

J 

dC 

dt 
dV + 

∫ 
S 

j k n k dS = 0 (40) 

By using the incompressibility condition given by Eq. 

(14) , we rewrite Eq. (40) as ∫ 
V 

1 

J 

dJ 

dt 
dV + 

∫ 
S 

ν j k n k dS = 0 (41) 

An expression for ∂ J 
∂t 

is required to implement Eq. (41) . 

To obtain such an expression, we rewrite Eq. (26) in di- 

mensionless form as 

μ̄= 

Nν

3 J 
( ̄I J 

2 
3 − 3) + 

[ 
ln 

(
J−1 

J 

)
+ 

1 

J 
+ 

χ0 − χ1 

J 2 
+ 

2 χ1 

J 3 

] 
− σ̄

(42) 
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Fig. 2. An illustration to approximate the swelling process as a mass diffusion process. Generally, heat transfer is a much faster process compared to mass 

diffusion. Thus we approximate the dynamic swelling process ( 1 ) as a heat transfer process ( 2 ) followed by a mass diffusion process ( 3 ). And since process 

( 2 ) is much faster and the gel material did not undergo much deformation during process ( 2 ), we only model process ( 3 ) as an approximation to process 

( 1 ). 
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Nv ) +

 

where μ̄ = μ/ kT , Ī = I J −
2 
3 is the deviatoric invariant,

σ̄= ̄σ11 + σ̄22 + σ̄33 / 3 is the dimensionless mean stress, and

σ̄ii = σii / ( kT /ν) . 

Using chain rule, and assuming J = f ( ̄I , σ̄ , μ̄) in

Eq. (42) , we write dJ 
dt 

as 

dJ 

dt 
= 

∂ J 

∂ μ̄

d ̄μ

dt 
+ 

∂ J 

∂ ̄I 

d ̄I 

dt 
+ 

∂ J 

∂ σ̄

d ̄σ

dt 
(43)

Combining Eqs. (41) and (43) , the governing equation

becomes ∫ 
V 

1 

J 

∂ J 

∂ μ̄

d ̄μ

dt 
dV + 

∫ 
S 

ν j k n k d S = −
∫ 

V 

1 

J 

(
∂ J 

∂ ̄I 

d ̄I 

d t 
+ 

∂ J 

∂ σ̄

d ̄σ

d t 

)
d V

(44)

The governing equations for the heat transfer process in

a solid are given as follows 

q i = −k 
∂T 

∂ x i 
(45)

∫ 
ρc p 

dT 

dt 
dV + 

∫ 
q k n k d S = 

∫ 
rd V (46)

∂ J 

∂ μ̄
= 

∂ J 

∂ σ̄
= 

Nv ̄I (1 − J) J 
8 
3 + 9 Nv J 3 + 9[(1 −
V S V 
where c p = dU / dt is the specific heat capacity. 

Comparing Eq. (39) and Eq. (44) with Eq. (45) and

Eq. (46) , we can see that the mass transport process may

be studied as a heat transfer process by the following

equivalence 

ρ = 

1 

J 
(47)

c p = 

∂ J 

∂ μ̄
(48)

T = μ̄ (49)

k = 

(J − 1) 

J 
D (50)

r = −1 

J 

(
∂ J 

∂ ̄I 

d ̄I 

dt 
+ 

∂ J 

∂ σ̄

d ̄σ

dt 

)
(51)

Using Eq. (42) , we obtain the explicit expression for the

partial derivative terms as 

 (J − 1) 

 2( χ1 − χ0 )] J 2 + 18( χ0 − 4 χ1 ) J + 54 χ1 

(52) 

∂ J 

∂ ̄I 
= − Nv 

3 J 
1 
3 

∂ J 

∂ σ̄
(53)
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Fig. 3. Volume of free-swelling hydrogel as a function of temperature. 

The solid curve is obtained analytically for the free swelling case. The cir- 

cles and asterisks are corresponding numerical prediction using UHYPER 

and UMAT, respectively. The triangles represent experimental results from 

Oh et al. (1998 ). 
Every term is now expressed in terms of the quanti- 

ties that are accessible as field variables in ABAQUS. To 

implement the present methodology in ABAQUS, we have 

adopted UHYPER for temperature-sensitive gel to govern 

the mechanical behavior. The choice of UHYPER over UMAT 

is due to simplicity of implementation of UHYPER in the 

diffusion-heat transfer model as the main purpose is to 

show the validity of the assumption in our analysis. Al- 

ternatively, the interested reader may implement the me- 

chanical properties using UMAT. 

The equivalent heat transfer properties, i.e. heat capac- 

ity, conduction coefficient and density are defined as func- 

tions of stretch invariants using subroutine USDFLD. The 

heat source term given by Eq. (51) is defined through 

subroutine HETVAL. With the concurrent application of 

these three subroutines, the kinetics of gel deformation 

can now be studied using ABAQUS using a fully coupled 

temperature-displacement analysis. 

5. Numerical examples for static analysis 

To verify the correctness of the developed finite ele- 

ment subroutine formulation and highlight the advantage 

of UMAT over UHYPER, several numerical examples are 

provided in this section. 

5.1. Free swelling 

The analytical solution may be obtained by searching 

the value of J at which the free energy functions are min- 

imized at a certain temperature T . It can also be derived 

analytically. In the free swelling process, the chemical po- 

tential for water molecules given by Eq. (26) may be sim- 

plified as 

μ = 

NkT ν

J 
( J 

2 
3 − 1) 

+ kT 

[ 
ln 

(
J − 1 

J 

)
+ 

1 

J 
+ 

χ0 − χ1 

J 2 
+ 

2 χ1 

J 3 

] 
(54) 

Using the equilibrium conditions given in Eq. (27) and 

with the fact that the chemical potential of water is ˜ μ = 0 , 

the analytical solution may be written as: 

NkT ν

3 J 
( J 

2 
3 − 3) 

+ kT 

[ 
ln 

(
J − 1 

J 

)
+ 

1 

J 
+ 

χ0 − χ1 

J 2 
+ 

2 χ1 

J 3 

] 
= 0 (55) 

The numerical solutions obtained using UHYPER and 

UMAT are plotted in Fig. 3 . In this problem we have chosen 

a value of Nv = 0 . 01 . For verification purpose, the experi- 

mental data reported by ( Oh et al., 1998 ) is also plotted. 

As shown in Fig. 3 the numerical results using UMAT are 

in good agreement with the analytical solutions, the nu- 

merical results using UHYPER and the experimental data. It 

should be noted that for a discontinuous phase transition, 

FEM is unable to overcome the turning points. To obtain 

both parts of the phase transition curve, we employ the 

method proposed by Ding et al. (2013) to start simulation 

from both ends, which terminate at points A and B. 
5.2. Uniaxial constraint 

Deformation under a uniaxial constraint refers to the 

swelling gel being fixed vertically and free to swell in the 

other two directions. In this case, the lateral stretches are 

the same, while the longitudinal stretch in the third di- 

rection is constant, i.e. λ1 = λ2 = λ, λ3 = λ0 . Thus J = λ2 λ0 

and I = 2 λ2 + λ0 
2 = 

2 J 
λ0 

+ λ0 
2 
. 

To illustrate the constraints of UHYPER, we consider 

two cases, i.e. λ0 = 1 and λ0 = 2 . Uniaxial constrained 

swelling induces stress in the longitudinal direction, while 

lateral stresses are zero. Using Eq. (25) , and the condi- 

tion σ11 = σ22 = 0 , the parameter to define the initial state 

needs to satisfy the following equation. 

Nk T 0 

λ1 
2 λ0 

( λ1 
2 − 1) + 

k T 0 
ν

[
ln 

(
λ1 

2 λ0 − 1 

λ1 
2 λ0 

)
+ 

1 

λ1 
2 λ0 

+ 

χ0 − χ1 (
λ1 

2 λ0 

)2 
+ 

2 χ1 (
λ1 

2 λ0 

)3 

] 

− ˜ μ

ν
= 0 (56) 

The analytical solution may also be derived based on 

the chemical potential of water ˜ μ = 0 , 

Nν

λ1 
2 λ0 

( λ1 
2 − 1) + 

[
ln 

(
λ1 

2 λ0 − 1 

λ1 
2 λ0 

)
+ 

1 

λ1 
2 λ0 

+ 

χ0 − χ1 (
λ1 

2 λ0 

)2 
+ 

2 χ1 (
λ1 

2 λ0 

)3 

] 

= 0 (57) 

Alternatively, the analytical solution can also be ob- 

tained by searching the value of J at which the global min- 

imum of the free energy functions is achieved at a certain 

temperature T . The numerical calculations obtained using 

UHYPER and UMAT are also plotted in Fig. 4 together with 

the analytical solution. As seen from Fig. 4 , UHYPER is only 

applicable to the process below the phase transition tem- 

perature in the case λ = 2 , and not applicable for the case 
0 
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Fig. 4. Volume of the uniaxial constrained swelling hydrogel as a function of temperature. (a) Fixed stretch in longitudinal direction λ0 = 1 ; (b) Fixed 

stretch in longitudinal direction λ0 = 2 . The other two directions are free to swell. UHYPER is only applicable to the process below the phase transition 

temperature in the case λ0 = 2 , and entirely not applicable for the case λ0 = 1 . 

Fig. 5. Normalized longitudinal stress during uniaxial swelling process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Physical properties of gel material. 

Density (kg/m 

3 ) Heat capacity 

(J/kgK) 

Thermal 

conductivity 

(W/mK) 

Network 1.2 × 10 3 2 × 10 4 2 

Solvent 1 × 10 3 4.2 × 10 3 −1 . 05 × 10 −5 T 2 + 

7 . 98 × 10 −3 T −
8 . 38 × 10 −1 

Table 2 

Physical parameters for gel with different 

compositions. NIPA and SA stands for N - 

isopropylacrylamide and sodium acrylate, 

respectively. 

No. NIPA:SA Nv D (m 

2 /s) 

B07 90:10 0.003 7 × 10 −8 

B03 98:2 0.01 1 . 2 × 10 −8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 
λ0 = 1 . As mentioned earlier, this is due to the fact that

the reference state for UHYPER has to be isotropic swelling.

When λ0 = 1 is fixed, the corresponding isotropic swelling

state is the dry state and J = 1 . This would encounter sin-

gularity in the calculation of free energy density. When

λ0 = 2 , there is no isotropic state at a temperature higher

than the phase transition temperature. Thus UHYPER is not

applicable. 

It is obvious that the only non-zero true stress during

the uniaxial deformation process is the normal stress in

the third direction σ 33 . In the uniaxial deformation pro-

cess, Eq. (24) may be written as: 

σ11 = σ22 = 

NkT 

λ0 λ1 
2 
( λ1 

2 − 1) − � (58)

σ33 = 

NkT 

λ0 λ1 
2 
( λ0 

2 − 1) − � (59)

Using the condition σ11 = σ22 = 0 to eliminate �, we

obtain 

σ33 = 

NkT 

λ λ 2 
( λ0 

2 − λ1 
2 
) (60)
0 1 
which gives the true stress as a function of temperature

T and stretch λ1 . Eq. (60) can be used to verify the cor-

rectness of the stress obtained using the presently pro-

posed methodology. By using either the analytical solu-

tion given by Eq. (57) or directly using the numerical

obtained from the output of ABAQUS, we can obtain

the value for λ1 at any temperature T , and substitute

these values into Eq. (60) to evaluate the stress. We can

also read the stress at any temperature from the nu-

merical simulation results. The stress during the uniaxial

swelling process calculated using Eq. (60) and obtained

via our subroutine has been plotted in Fig. 5 . As can be

clearly observed, they are in good agreement. For con-

venience we have normalized the stress by kT 0 /v , with

T = 300 K. 
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a b

Fig. 6. Comparison of simulation results with experimental results. Solid line represents simulation results, while discrete points represent experimental 

data ( Zhuang et al., 20 0 0 ). (a) Swelling ratio as a function of time for sample NO. B07 in ( Zhuang et al., 20 0 0 ), Nv = 0.003 D = 7E–8 m 

2 /s (b) Swelling ratio 

as a function of time for sample NO. B03 in ( Zhuang et al., 20 0 0 ), Nv = 0.01 D = 1.2E–8 m 

2 /s. The simulation model is a cylinder with a diameter of 1 cm 

and thickness 2 mm, and dry gels are immersed in water at 297 K. 

Fig. 7. Displacement contour plots for non-dimensioned free swelling cubic gel based on method 1 at various time intervals. The plots are of similar scale 

to show the large deformation process. In this method, heat transfer is treated as an instantaneous process. 
6. Verifications of the transient model 

6.1. Comparison with experimental results 

To verify the correctness of the transient model, we 

compare simulation results with available experimental 

measurements reported by ( Zhuang et al., 20 0 0 ). In the 
experiments, the gel was cut into disks with thickness of 

2 mm and diameter of 1 cm. The results were reported us- 

ing mass swelling ratio. Using the physical parameters re- 

ported in the literature ( Bae et al., 1989; Bird et al., 2007; 

Prokop et al., 2003; Salmerón Sánchez et al., 2004; Wag- 

ner and Pruß, 2002 ), we convert the mass swelling ratio 

to volume swelling ratio. The physical properties for the 
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Fig. 8. Displacement contour plots for non-dimensioned free swelling cubic gel based on method 2 at various time intervals. The plots are of similar scale 

to show the large deformation process. In this method, mass diffusion is treated as an instantaneous process. 

Fig. 9. Schematic illustrations of the four chosen points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

polymer and solvent phases are summarized in Table 1 .

Since the values for Nv and D are not given explicitly in

the references, we perform fitting to obtain these values.

Table 2 summarizes the parameter values for gels with dif-

ferent compositions. We have chosen the isotropic state

with initial stretch 1.0 0 01 as the dry state to avoid singu-

larity of the free energy function when J = 1. It is observed

from Table 2 that different Sodium Acrylate contents can

result in different polymer chains density ( Nv ) and diffu-

sion coefficient ( D ). The experimental measured and sim-

ulated results for the variation of swelling ratio with re-
spect to time are shown in Fig. 6 . Good agreement be-

tween experimental results and simulation results for both

samples with different Sodium Acrylate contents has been

observed. 

6.2. Verification of assumption of process rates 

In Section 4.2 , we have assumed that heat transfer is

a much faster process than mass diffusion. We will now

verify this assumption. The total time for heat transfer can

be obtained by treating mass diffusion as an instantaneous
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a b

Fig. 10. Stretches at the four chosen points as a function of time. (a) Method 1: treating heat transfer as an instantaneous process (b) Method 2: treating 

diffusion as an instantaneous process. 

Fig. 11. Schematic illustration of substrate directed creasing. (a) Gel is fixed on substrate with step edge; (b) After swelling, the position of the crease is 

directed by the step edge position of the substrate. 

 

process. We first assume that the transfer of heat energy 

is due to conduction of heat in both the polymer network 

as well as solvent molecules. Next we assume deforma- 

tion to be temperature driven as the gel is pre-swollen to a 

state of homogenous chemical potential. The heat conduc- 

tion equation is given by Eqs. (45) and ( 46 ). 

The thermal properties are taken to be a mixture of 

both components. The thermal conductivities of the poly- 

mer network and solvent are assumed to be isotropic, with 

conductivity of solvent taken to be dependent on temper- 

ature as shown in Table 1 . The conductivity, density and 

heat capacity are expressed as 

k m = φk p + ( 1 − φ) k s (61) 

ρm = φρ p + ( 1 − φ) ρs (62) 

c m 

p = φc p p + ( 1 − φ) c s p (63) 

where k, ρ and c p are the conduction coefficient, density 

and specific heat capacity respectively. The superscripts m, 

p and s represent the mixture, polymer network and sol- 

vent respectively. Their values are given in Table 1 

Now we simulate the deformation process as a heat 

transfer process with the concurrent use of UHYPER and 

USDFLD, based on the two methods described above. Con- 

sider the process when a cubic gel of unit length is im- 

mersed in water and undergoes a temperature drop from 
303 K to 283 K. Using the method proposed in Section 4.2 , 

this process is equivalent to a process where the nor- 

malized chemical potential increases from −0 . 017 to 0 at 

283 K. Based on Eq. (54) , we can calculate that the cubic 

gel will swell from the initial stretch of 2.200 to 3.137. 

In the simulation where mass diffusion is assumed 

dominant (method 1, which assumes heat transfer is in- 

stantaneous), we define a dimensionless time t̄ = Dt / L 2 , 

where D is the diffusion coefficient given in Table 2 and 

L is the length of the cube. In the simulation where heat 

transfer is assumed dominant (method 2, which assumes 

diffusion is instantaneous), we employ the same character- 

istic time for non-dimensionalization. This translates to t̄ = 

0 . 144 × D e t / L 
2 = Dt / L 2 , where D e = k p / ( ρ p c 

p 
p ) . This equal- 

ity can be easily verified with the physical properties pro- 

vided in Table 1 and Table 2. 

Static analysis assumes that the gel will remain ho- 

mogenous during the swelling process, which is not the 

case. To see exactly how the gel is deforming, several 

representative states have been selected and shown in 

Figs. 7 and 8 . It is observed that the corner regions of the

cubic gel will deform first because of comparatively larger 

contact surface with the solution. In addition, the differ- 

ence in swelling time between both sets of results high- 

light the differences in swelling rates between heat trans- 

fer and mass diffusion. 
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Fig. 12. In-plane strain distribution at (a) initial state (b) just before creasing (c) swollen state. The unit cell has dimensions l:h:w:t = 7:4:3:2, and gel 

undergoes a temperature drop from 303 K to 283 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To have a better idea of how different parts of the gel

deform at varying rates, four points have been chosen for

further study. Consider one quarter of the cubic as high-

lighted in red, the points A, B, C, and D are chosen as

shown in Fig. 9. 

The change of stretches at points A, B, C and D with

respect to time are plotted in Fig. 10 (a) and (b) for Method

1 and Method 2. 

For both methods, it is evident that while the initial

rates of swelling are different, the eventual uniform distri-

bution of chemical potential and temperature would lead

to homogenous swelling at all points. Therefore the steady-

state equilibrium stretch is consistent with the analytical

solution calculated from Eq. (55) , thus verifying that the

final state of the transient analysis approaches the theoret-

ical equilibrium state. 

The total swelling time is the time taken for the center

of the cube (Point D) to reach equilibrium. Comparing the

total swelling time using method 1 and method 2, we can

observe that the time taken for diffusion is about three or-

ders of magnitude slower than that for heat transfer. This

verifies our earlier assumption that the mass diffusion pro-

cess is much slower as compared to the heat transfer pro-

 

cess. Thus it is an appropriate assumption to treat the heat

transfer process as an instantaneous one, in the event that

both processes are present during the deformation. 

7. Applications 

7.1. Substrate directed creasing pattern 

The swelling induced surface instability of hydrogels

has been studied experimentally and theoretically. The

buckling pattern depends on the mechanical and geomet-

rical properties of the swelling material ( Liu et al., 2011 ).

However, it has been reported that the creasing pattern of

surface-attached hydrogel can be directed by the underly-

ing rigid substrates ( Kim et al., 2010 ), as shown in Fig. 11. 

As discussed by ( Toh et al., 2015 ), dynamic finite ele-

ment simulations have the tendency to terminate abruptly

due to surface winkling in transient analysis. Thus we only

perform static analysis using UMAT with plain strain ele-

ments. The in-plane strain distribution patterns just before

the onset of wrinkling and at the final state are shown in

Fig. 12 . As shown in the figure, compressive in-plane strain

in the region (black arrow in Fig. 12 (b)) during swelling
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Fig. 13. The von-Mises stress distribution during the bifurcation process. The side of the unit cell is 3, the radius of the hole is 1, and the thickness of the 

film is 1. Symmetric boundaries are applied at the side accordingly while the bottom surface is fixed. The gel undergoes temperature drop from 303 K to 

283 K. 
induces the formation of a crease some distance away from 

the step edge. This indicates that the wrinkling patterns 

can be guided (or influenced) by the topographic feature 

of the substrate. 

7.2. Bifurcation 

When a thin film containing holes in a square array is 

exposed to a solvent as shown in Fig. 13 , a diamond plate 

pattern is observed. Circular holes are deformed into el- 

liptical slits and neighboring slits are mutually perpendic- 

ular ( Zhang et al., 2008 ). Owing to several attractive me- 

chanical and acoustic applications, many researchers have 

tried to explain the gel behavior using the thermodynamic 

model ( Ding et al., 2013; Hong et al., 2009; Okumura et al., 

2014 ). However, these studies are all equilibrium steady- 

state analyses. Here we consider a unit cell containing 

quadrants of four neighboring holes as shown in Fig. 13 (a), 

where the initial temperature is fixed at 303 K. The side of 

the unit cell is 3, the radius of the hole is 1 and the thick- 

ness of the film is 1, as shown in Fig. 13 (a). Note that the 

unit does not matter, since we are using non-dimensional 

quantities, and in this example the thickness is taken as 

the characteristic length when normalizing time. To en- 

hance the visualization, we examine snapshots of the unit 

cell at several time intervals. 
The deformation and stress distribution at various di- 

mensionless times are shown in Fig. 13 . It is observed 

that the von-Mises stress at the slit tip is much higher 

compared with other regions, which is similar to a crack 

tip. As Zhang et al. (2008) did not provide informa- 

tion on the deformation pattern transformation or the 

value of diffusion coefficient, we are unable to compare 

or verify our results with the experimental observation. 

However, our method can be used to control the fab- 

rication process if it is subsequently verified to work 

well. 

7.3. Buckling of swelling gel 

The patterns arising from the differential swelling of 

the gels have been investigated experimentally and theo- 

retically as a model for the differential growth of living tis- 

sues ( Liu et al., 2010; Liu et al., 2013; Mora and Boudaoud, 

2006 ). Here we consider the case study of a swelling an- 

nulus gel fixed at the inner wall. It has been generally ac- 

cepted that the buckling pattern depends on the ratio be- 

tween inner radius and outer radius of the annulus gel 

( Mora and Boudaoud, 2006 ). However, what static analy- 

ses have failed to show, is that from the onset of buck- 

ling to the time the gel reaches the equilibrium mode 

shape, the gel transits between different mode shapes. In 
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Fig. 14. The contour plot of y -displacement showing the evolution of wrinkles of an annulus with height 5 mm, inner radius 50 mm and outer radius 

75 mm. The transition of mode shapes can be observed from (a) to (g) and the propagation of a travelling wave is seen in (g) to (i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

addition, when a gel first reaches the equilibrium mode

shape, the buckling waves propagate through a twisting

motion. Fig. 14 shows both interesting phenomena which

are not observable in static analyses. 

For a better understanding of the swelling process, we

plot the stress and vertical displacement of selected points

as shown in Fig. 15 . It can be observed from Fig. 14

that mode transitions often occur within the first 50 units

of time. Also, there is substantial fluctuation in the stress

and displacement curves, see Fig. 15 . Following this, the

annulus will swell and take on the third mode for about

500 units of time. At about t̄ = 700 , the annulus changes

to the fourth mode and starts to rotate at about t̄ =
1500 . This mode transition phenomenon has been ob-

served in earlier simulations carried out for polymeric gels
( Toh et al., 2013 ). Though there are mode transitions, the

equilibrium mode shape is consistent with the experimen-

tal observations ( Mora and Boudaoud, 2006 ) and static

simulations ( Liu et al., 2013 ). To our best knowledge, there

is no experimental report for the rotational instability of

the swelling annulus, but such instability has been pre-

dicted numerically ( Freund, 20 0 0 ) and observed experi-

mentally ( Holmes et al., 2011 ) for a swelling disk. Due to

the axial symmetry, there are numerous energy favorable

orientations for the equilibrium mode shape. A random

perturbation may lead to re-orientations into other min-

imum energy states. In our simulations, the dynamics of

diffusion and swelling may results in perturbation signifi-

cant enough to cause a travelling buckle wave to propagate

around the annulus. 
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Fig. 15. The von-Mises stress (a), and vertical displacement (b), as a function of time for the selected points during the swelling process. Mode transitions 

often occur within the first 50 units of time. At around t̄ = 700 , the annulus takes on the fourth mode and starts to rotate at around t̄ = 1500 . 

 

 

 

 

 

 

 

8. Concluding remarks 

The prevalent approach of modeling hydrogels as hy- 

perelastic materials reduces the amount of work required 

for finite element implementation. However, this conve- 

nience comes with a trade-off and requires the gel be 

isotropically stretched in the initial conditions. To over- 

come this constraint, we have developed a more ro- 

bust model for simulating temperature sensitive hydro- 

gels by defining its constitutive equations using UMAT, 

rather than a hyperelastic material using UHYPER. With 

this highly robust subroutine, it becomes possible to sim- 

ulate cases which find UHYPER deficient. This approach 

is verified with analytical solutions for numerical accu- 

racy, as well as with experimental results for theoretical 

validity. 

In addition, we have proposed a model for the tran- 

sient swelling simulation of temperature sensitive hydro- 

gels, which is a coupled process involving heat transfer 

and diffusion of solvent molecules. By showing that the 

heat transfer process is three orders of magnitude faster 

than the mass diffusion process, we have validated and 

employed the assumption that heat transfer may be taken 

to be an instantaneous process. 

Using the above two developments, we have provided 

several numerical examples to illustrate the potential ap- 

plications of this work, including surface creasing, bifurca- 

tion and buckling of gels. These examples have provided 

deeper insights into interesting new physical phenomena 

observed in experiments. In the buckling of gels, tran- 

sient analysis has shed light on two phenomena which 

static analysis is unable to show, namely the transition 

of mode shapes during the transient swelling process and 

the rotation of buckling waves upon reaching the equi- 

librium mode shape. These capabilities provide a valu- 

able tool for further research into the development of 

novel and innovative applications of temperature sensitive 

hydrogels. 
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