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a b s t r a c t

In this paper, pattern transformation behaviors of shape memory polymer (SMP) periodic cellular
structures are investigated through numerical simulations. In order to describe SMP cellular structures
behavior in the shape memory cycle, generalized thermo-mechanical viscoelasticity theory coupling
time–temperature effect are utilized with the generalized Maxwell model and the Williams–Landel–Fe
rry (WLF) equation. Similar to other normal periodic cellular structures, SMP periodic cellular structures
also display the interesting phenomenon of novel pattern transformation when the structures are loaded
by compression force beyond a critical value. Different from other periodic cellular materials, novel
transformed pattern for SMP material can be fixed via cooling to a temperature below the glass transition
temperature Tg, and this fixed pattern can further be recovered to its original pattern by reheating to a
temperature above Tg. Moreover, viscous property of SMP during shape memory cycle is taken into
account by considering the effects of nominal strain rate and temperature on the pattern transformation.
Time–temperature superposition principle is adopted to explain these effects. On the other hand, this
transformation phenomenon for SMP can be triggered even by the stress relaxation process. It is also
observed that the auxetic behavior (negative Poisson ratio) exists in the pattern transformation during
both the compression process and the stress relaxation process for SMP periodic cellular structures.
With present study, we are able to gain deeper insights and explain some of the new interesting physical
phenomena observed in reported experiments for SMP periodic cellular structures. Besides, these new
findings can be used to design appropriate SMP structures in special applications.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Shape memory polymers (SMPs) are polymeric smart materials
that have the ability to fix a deformed state (temporary shape) and
to recover back to their original states (permanent shapes) upon
the application of certain external stimuli. These external stimuli
include heat, pH, magnetic field, light and so on (Behl et al.,
2013; Lendlein et al., 2005; Liu et al., 2007). Over the past decade,
SMPs have been investigated intensively by many researchers, as
they possess a number of advantages over other shape memory
materials, including large recoverable strain (reported at over
400% in comparison with 8% for Ni-Ti SMA), low energy consump-
tion for shape programming, light weight, low cost, excellent man-
ufacturability and bio-degradability (Chen and Lagoudas, 2008a,b;
Lendlein and Kelch, 2002; Liu et al., 2006; Mather et al., 2009;
Morshedian et al., 2005; Qi et al., 2008; Qiao et al., 2013;
Tobushi et al., 1997, 2001). Because of these excellent advantages,
SMPs have been widely applied as microsystem actuator compo-
nents, biomedical devices, aerospace deployable structures and
morphing structures in the aerospace industry and biomedical
engineering (Liu et al., 2004; Tobushi et al., 1996; Yakacki et al.,
2007).

Shape recovery triggered by temperature change is known as
the thermally induced shape memory effect. Fig. 1 shows a typical
SMP deformation circle for thermally induced shape memory
material. In step 1, named the loading step, the SMP is
pre-deformed from an initial shape (permanent state A) to a
deformed shape (temporary state B1) by applying a mechanical
load at the higher temperature Th. The corresponding strain and
stress at state B1 are denoted as pre-strain and pre-stress states.
Followed by step 2, named the cooling process, it will maintain
the pre-deformed shape until the temperature arrives at the lower
temperature Tl (temporary state B2). Subsequent to this is step 3,
named the unloading process (from temporary state B2 to tempo-
rary state B3), where the externally applied loading is removed at
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Fig. 1. Typical shape memory circle.

Y. He et al. / International Journal of Solids and Structures 71 (2015) 194–205 195
the lower temperature Tl. Finally, in step 4 (from temporary state
B3 to permanent state A), this shape memory effect is activated
by increasing the temperature again, whereupon the initial shape
is recovered to permanent state A.

To study SMP’s deformation behaviors and shape memory cycle,
different constitutive models have been developed to characterize
the complex thermo-mechanical properties of SMPs in the last few
years. Most of the earlier theories adopted rheological models and
their constitutive models usually consist of simple elements such
as spring, dashpot and slip (frictional) elements (Abrahamson
et al., 2003; Bhattacharyya and Tobushi, 2000; Lin and Chen,
1999; Morshedian et al., 2005; Tobushi et al., 1997, 2001). These
models are capable of capturing the characteristics of the shape
memory behavior of SMPs and usually give predictions that are
only qualitatively agreed with experimental results. Later devel-
oped models are often divided into two general categories: micro
modeling and macro modeling (Baghani et al., 2013; Chen and
Lagoudas, 2008a,b; Diani and Gall, 2007; Liu et al., 2006; Nguyen
et al., 2008; Qi et al., 2008). The micro models are useful for under-
standing the fundamental molecular mechanism but they are not
easily applicable at the structural scale (Nguyen et al., 2010; Xu
and Li, 2010). On the other hand, macro models are appropriate
for studying deformation and shape memory mechanisms at the
structural level and are easily realized with numerical methods
such as finite element commercial software, but they can only phe-
nomenologically describe the material behavior. Among these
models, the generalized Maxwell model proposed by Diani et al.
is more popular and can be easily adopted (Diani et al., 2012). In
this model, the time–temperature dependence of the viscoelastic
properties of the SMPs was determined using a dynamic mechan-
ical analysis procedure of relatively small-strain large-deformation
torsion tests (Diani et al., 2011); no other experiments or fitting
parameters were needed. Implementation of the model in numer-
ical analysis was based only on a combination of standard features
from commercially available finite element codes and did not call
for the contribution of any additional elaborate complex routines.
Although the model is simple, it is capable not only of reproducing
the experimental shape memory tests precisely and accurately, but
also of predicting the shape memory response of thermally acti-
vated SMPs with varying compositions, structures and geometries
under varying thermo-mechanical conditions. Arrieta et al. have
carried out experiments and validated that the Diani et al. model
can be applied to large uniaxial strain and shape memory compos-
ites (Arrieta et al., 2014a,b). Since this model has these advantages
and the viscoelastic theory of the generalized Maxwell model can
be realized easily in the commercial finite element package of
ABAQUS, we will use the generalized Maxwell model proposed
by Diani et al. (2012) to carry out our simulations.

The periodic cellular structures come from the natural world,
such as iridescent phenomena in butterflies, beetles, moths, birds
and fish (Prum et al., 2006; Vukusic and Sambles, 2003). The novel
pattern transformation appears when the periodic cellular
structure is compressed beyond a critical value. In the pattern
transformation, switching to a new configuration is normally caused
by local elastic instabilities, and it is often reversible and repeatable
(Mullin et al., 2007). There are many factors that affect the pattern
transformation of periodic cellular structures, such as the initial
porosity of the structures (Bertoldi et al., 2010), the arrangement
of the holes (Bertoldi and Boyce, 2008), the loading case (Michel
et al., 2007), the shape of the holes (Hu et al., 2013) and the inclu-
sions in the holes (Hu et al., 2014; Mullin et al., 2013). While these
types of cellular structures have been widely investigated in
relation to their special mechanical properties of novel pattern
transformation, the mechanical behavior of SMP periodic cellular
structures, where the material of periodic cellular structures
involves smart material with shape memory effects, has not been
investigated in detail. Although Mullin et al. referred to the pattern
transformation of SMP periodic cellular structures induced by com-
pression, they did not provide complete investigation process
details for the shape memory behaviors and failed to consider the
effect of the viscosity of materials (Mullin et al., 2007). In the pre-
sent study, we will intensively study the deformation behaviors
of SMP periodic cellular structures with typical shape memory
behaviors. Based on experimental observations and understandings
of the underlying physical mechanism of shape memory behavior, a
generalized Maxwell model is adopted to describe the viscoelastic
thermo-mechanical response of materials. The Williams–Landel–F
erry (WLF) equation is adopted to capture time–temperature
dependent behaviors. In our study, pattern transformations caused
by compression and stress relaxation are considered in the shape
memory circle. The effects of temperature and loading speed on
pattern transformation are taken into account and the mechanism
of pattern transformation is explained using the time–temperature
superposition principle. With some examples, it is demonstrated
that the viscoelastic theory of the generalized Maxwell model can
be easily implemented in finite element simulations, and that the
present numerical simulation model is efficient in verifying the
thermo-mechanical experiments of Diani et al. (2012).

The article is organized as follows. In Section 2, we introduce
the viscoelastic theory of the generalized Maxwell model and the
corresponding material parameters used in the present study.
Then, we utilize the proposed model to simulate the pattern trans-
formations of the SMP material periodic cellular structures. The
simulations include two cases, one is the pattern transformation
during uniaxial compression and the other is the pattern transfor-
mation during stress relaxation. Finally, we present summary and
concluding remarks.
2. Viscoelastic theory

Based on the theory proposed by Diani et al. (2012), we have
adopted the generalized finite deformation viscoelasticity theory
(Simo, 1987) coupling with the time–temperature effect of amor-
phous networks, i.e., the generalized Maxwell model (also known
as the Maxwell–Weichert model, as shown in Fig. 2) and coupling
with the WLF equation to describe the viscoelastic behavior of the
amorphous polymer (epoxy 12DA3) utilized in the present study.

To calculate the finite strain behavior, we adopt the finite strain
viscoelasticity theory. Here neo-hookean model is employed to
describe the hyperelastic behavior as follows,



Fig. 2. Generalized Maxwell model.
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U ¼ C10ð�I1 � 3Þ þ 1
D1
ðJel � 1Þ2 ð1Þ

where C10 = G0/2, D1 = 2/K0, G0 and K0 are the initial shear modulus
and bulk modulus, �I1 is the first strain invariant, Jel is the elastic
volume strain,

Jel ¼
J

Jth
ð2Þ

where J is the total volume strain and Jth is the thermal volume
strain,

Jth ¼ ð1þ ethÞ3 ð3Þ

where eth is the linear thermal expansion strain.
In order to take into account of viscoelastic property for SMP

material, the basic hereditary integral formulation for linear isotro-
pic viscoelasticity is

rðtÞ ¼
Z t

0
2Gðs� s0Þ _edt0 þ I

Z t

0
Kðs� s0Þ _/dt0 ð4Þ

where r is the instantaneous Cauchy stress, e and / are the
mechanical deviatoric and volumetric strains, ‘�’ denotes differenti-
ation with respect to t0, K and G are the time-dependent small-strain
shear and bulk relaxation moduli, which are functions of the
reduced time s,

Using integration by parts and a variable transformation, Eq. (4)
can be written in the form as follows,

rðtÞ ¼ 2G0eðtÞ þ
Z s

0
2 _Gðs0Þeðt � t0Þds0 þ IðK0/ðtÞ

þ
Z s

0

_Kðs0Þ/ðt � t0Þds0Þ ð5Þ

where G0 and K0 are the instantaneous small strain shear and bulk

moduli. _Gðs0Þ ¼ dGðs0Þ=ds0, and _Kðs0Þ ¼ dKðs0Þ=ds0. For the
non-isothermal process, recall that the reduced time s represents
a shift in time with temperature

ds
dt
¼ 1

aTðTðtÞÞ
ð6Þ

where aT(T) is the time–temperature superposition shifting factor
following the classic Williams–Landel–Ferry (WLF) equation,

lgðaTÞ ¼
�C1ðT � Tref Þ
C2 þ T � Tref

ð7Þ

where C1 and C2 are material constants. Tref is the WLF reference
temperature. According to Diani et al., the parameters are taken
as C1 = 10.17, C2 = 47.35 �C, Tref = 50 �C.
In constitutive Eq. (5), the relaxation moduli G(t) and K(t) are
expressed in terms of Prony series to implement the viscoelasticity
theory in ABAQUS,

GðsÞ ¼ G1 þ
XnG

i¼1

Gie�s=sG
i ; KðsÞ ¼ K1 þ

XnK

i¼1

Kie�s=sK
i ð8Þ

where G1 and K1 represent the shear and bulk moduli at time
t =1. In general, the number of terms in bulk and shear moduli,
nK and nG, need not be equal to each other, and in many practical
cases it can be assumed that nK = 0. Additionally, it is assumed that
nG = n and si ¼ sK

i ¼ sG
i . In order to be consistent with the data from

DMA experiments, the moduli are alternated to another form in the
frequency domain using Fourier transformations. Both the shear
and bulk moduli can be divided into two parts, the storage modulus
and the loss modulus.

GsðxÞ ¼ G0 þ
Xn

i¼1

Gis2
i x2

1þ s2
i x2

; GlðxÞ ¼
Xn

i¼1

Gisix
1þ s2

i x2
ð9Þ

Ks ¼ K0; Kl ¼ 0 ð10Þ

where subscript s is the storage modulus, subscript l is the loss
modulus and x is the sweep frequency. The bulk modulus is taken
as a constant value K0 = 3.1 GPa in the present study. With
experimental DMA data in Diani et al. (2011,2012) and using a
time–temperature superposition principle, the storage modulus in
the frequency domain was expressed as follows:

GsðxÞ ¼ Ge þ
X12

i¼1

Gis2
i x2

1þ s2
i x2

ð11Þ

where Ge ¼ 1:6 MPa, and si and Gi (i = 1, 2, . . ., 12) are series of
relaxation times and relaxation moduli respectively; their values
are listed in Table 1.

To consider the effect of thermal expansion, the coefficients of
linear thermal expansion are taken as 5.7 � 10�5 �C�1 in the glassy
state and 2.44 � 10�6 �C�1 in the rubbery state.

The viscoelastic theory of the generalized Maxwell model
described above can be realized easily in the commercial finite ele-
ment package of ABAQUS (Appendix Ashows ABAQUS input file),
and all the parameters can be derived and obtained from the work
of Diani et al. (2012).

3. Pattern transformation

To study the pattern transformation of SMP periodic cellular
structures, the finite element package of ABAQUS is used to carry
out the simulations. In the simulations, the constitutive model
used to describe SMP behaviors is the generalized Maxwell model,
which considers the viscosity of material. Two types of pattern
transformations are investigated in the following: one is induced
by compression load and the other is induced by stress relaxation.

3.1. Pattern transformation induced by compression

Novel pattern transformation triggered by reversible elastic
instability under uniaxial compression in periodic cellular struc-
tures has been investigated by many researchers (Bertoldi et al.,
2010; Hu et al., 2013; Mullin et al., 2007; Willshaw and Mullin,
2012). In our previous study, we have studied the effect of the
hole’s shape (Hu et al., 2013) and inclusions (Hu et al., 2014) on
the pattern transformation. However, there was little considera-
tion for SMP periodic cellular structures even though they possess
many unique mechanical properties. In our present study, we
investigate the pattern transformation of SMP periodic cellular
structures.



Table 1
Generalized Maxwell model relaxation times and associated shear moduli pairs (Diani et al., 2012).

si ðsÞ 0.3031 � 10�4 0.1721 � 10�3 0.9768 � 10�3 0.5545 � 10�2 0.3147 � 10�1 0.1787
Gi ðPaÞ 0.1476 � 109 0.1756 � 109 0.2025 � 109 0.1775 � 109 0.6802 � 108 0.1139 � 108

si ðsÞ 0.1014 � 101 0.5757 � 101 0.3268 � 102 0.1855 � 103 0.1053 � 104 0.5977 � 104

Gi ðPaÞ 0.2264 � 107 0.8132 � 106 0.4020 � 106 0.1760 � 106 0.5056 � 105 0.1265 � 105

Y. He et al. / International Journal of Solids and Structures 71 (2015) 194–205 197
First, we investigate the critical porosity for SMP cellular struc-
tures, which is a prerequisite for pattern transformation. It is noted
that the temperature effect is governed by the time–temperature
superposition theory stated in the following discussion, thus we
do only the test at a higher temperature in order to save time. A
number of simulation tests of SMP with different porosities have
been carried out. Finally, we found that the critical porosity is
about 0.18 for SMP case, which is lower than 0.34 in Bertoldi’s case
(Bertoldi et al., 2010). This difference may likely be caused by the
viscoelastic property of SMP.

In the simulations, we consider a representative volume ele-
ment (RVE) with appropriate periodic boundary conditions to
eliminate boundary condition effects. The RVE model is a
40 � 40 � 2 mm3 plate sample (plain strain or plain stress cases)
with periodic circle holes, as shown in Fig. 3. The diameters of
the circle holes are 8.67 mm, which gives a porosity of 0.59 larger
than the critical porosity.

Then, we reproduce our previous work using a type of hypere-
lastic material named PSM-4 with this RVE model, and the model is
applied with a uniaxial compression as shown in Fig. 3. Assuming
the length changes induced by compression are DL1 and DL2

respectively, the nominal strain can be defined as �DL1/L1 and
the nominal transverse strain can be defined as DL2/L2. Thus, the
Poisson ratio is defined as the ratio of nominal transverse strain
and nominal strain,

m ¼ �DL2=L2

DL1=L1
ð12Þ

The nominal stress versus nominal strain curve and the Poisson
ratio versus nominal strain curve are shown in Fig. 4. When the
model is compressed beyond a critical value, the gradual and
homogeneous compression of the periodic cellular hole pattern is
replaced by a transformation to a totally different pattern of alter-
nating mutually orthogonal ellipses. After pattern transformation,
the cellular structures display new properties; for example, the ini-
tial linear elastic behavior is replaced by a plateau stress, and neg-
ative Poisson ratio appears. As shown in Fig. 4, the curves depart
from their initial behavior at a nominal strain value of about
0.035, which corresponds to pattern transformation. The nominal
strain value is known as the critical nominal strain, and the
nominal stress at the critical nominal strain is known as the critical
nominal stress.
Fig. 3. Schematic plot for pattern transf
For SMP material, we use the same geometrical model for mod-
eling the periodic cellular structures. The simulation processes of
shape memory circles, as illustrated in Fig. 5, are expressed as fol-
lows: r pre-deformation: at the high temperature (70 �C, above
Tg), the lower end of the model is fixed with the displacement of
the y-direction while the upper end of the model for Fig. 5(a) (or
the platen for Fig. 5(b)) is applied with a uniaxial compression at
a constant nominal strain rate of 0.01 s�1 to a nominal strain of
0.1; s strain storage: keep the nominal strain constant for
Fig. 5(a) (or maintain the position of the platen for Fig. 5(b)) and
cool the sample to the low temperature (0 �C, below Tg) at a tem-
perature rate of 14 �C/min; t low temperature unloading: release
the nominal strain constraint for Fig. 5(a) (or remove the platen for
Fig. 5(b) in the simulation only the contact between the platen and
the sample is removed) in 1 s at the low temperature and maintain
the low temperature for another 99 s; u free strain recovery:
reheat the sample to the initial high temperature (70 �C) at a tem-
perature rate of 14 �C/min.

Normally there are two types of loading cases for periodic cel-
lular structures. For the loading case as shown in Fig. 5(a), four
cycle steps are used. In the first step, during the loading process
at high temperature, the pattern transformation occurs at a nomi-
nal strain value of about 0.049, while the nominal stress decreases
after the transformation and quickly reaches a plateau stress at the
zooming part, as shown in Fig. 6. In the second step, the strain is
kept constant and the compressive nominal stress decreases as
the temperature decreases due to thermal contraction. When the
compressive nominal stress decreases to zero, it changes to tensile
nominal stress and the tensile nominal stress increases as the tem-
perature decreases. In the third step, the strain constraint is
removed in the glassy state. Due to the higher elastic modulus at
lower temperatures, the nominal strain recovery is very low com-
pared to the pre-deformation nominal strain. After unloading, no
recovery strain appears during the following 99 s at 0 �C; that is
to say, the deformation is fixed during the second step. In the
fourth step, during the reheating process, the deformation is fully
recovered to its initial state.

The loading case shown in Fig. 5(b) is the same as the loading
case of Fig. 5(a) in the first step. However, in the second step, no
tensile nominal stress appears after the compressive nominal
stress decreases to zero. Instead, the nominal stress remains at
zero, the sample continues to contract and the sample is separated
ormation induced by compression.



Fig. 4. Nominal stress versus nominal strain curve and Poisson ratio versus nominal strain curve of periodic cellular structures with circle holes and porosity of 0.59.

Fig. 5. Schematic plot of loading cases: (a) the compressive load is exerted to the upper surface of the sample; (b) the compressive load is exerted with a platen. r–u

represent the four steps in the shape memory circle.

Fig. 6. Nominal stress response as a function of time during the compression inducing pattern transformation included shape memory circle (r–u represent the four steps
in the shape memory circle, the zooming part is the nominal stress as a function of time during the loading step at high temperature 70 �C).
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from the platen. Thus, no extra nominal strain recovery appears in
the third step because no nominal stress exists at the end of the
second step. In the fourth step, the deformation is also fully recov-
ered during the reheating process.

The nominal stress and the nominal strain responses of the
shape memory circles are illustrated in Figs. 6 and 7, in which
r–u represent the four steps in the shape memory circles.

In order to validate the pattern transformation in general cellu-
lar structure, we adopted another kind of periodic cellular struc-
ture with hexagonal holes. The RVE model of the periodic cellular
structure with hexagonal holes is a 40 � 40 � 2 mm3 plate sample
(plain strain or plain stress cases), and the side lengths of the
hexagonal holes are 4.77 mm which also gives a porosity of 0.59.
The boundary conditions are the same as those of loading case
(a) for the circle-hole periodic cellular structure. The patterns at
different stages during the shape memory circle are shown in
Fig. 8, and the nominal strain and nominal stress responses as a
function of time are shown in Fig. 9. Since the mechanical proper-
ties of the hexagon-hole periodic cellular structure are similar with
those of circle-hole one, we only present the numerical result of
circle-hole case in the following.

As shown in Figs. 6 and 7, the mechanical behaviors of the SMP
periodic cellular structures are the same during the compression
process for the loading case of Fig. 5(a) and (b), and so all the sim-
ulation results in the following relate to the loading case of
Fig. 5(a). This is because this loading case needs not consider the
contact and can reduce the computing time. From our present
study, we also find temperature and loading nominal strain rate
greatly influence the pattern transformation of SMP periodic
cellular structures; the influence on pattern transformation is
described with the critical nominal strain which relates to pattern
transformation.

To study the influence of temperature on pattern transforma-
tion, a constant nominal strain rate of 0.01/s is used. Since the
nominal stress versus nominal strain behaviors are the same for
the temperature range from 0 �C to 30 �C, the critical nominal
strain is only present at temperatures above 30 �C, as shown in
Fig. 10. It is observed that the maximum critical nominal strain
occurs at a temperature of about 45 �C, which means that a much
Fig. 7. Nominal strain response as a function of time during the compression inducing p
in the shape memory circle, the zooming part is the nominal strain as a function of tim
longer time will be needed to achieve pattern transformation at
about 45 �C under the loading nominal strain rate of 0.01/s.

To further investigate the influence of loading speed, four nom-
inal strain rates with 0.01/s, 0.005/s, 0.002/s and 0.001/s are
adopted. The simulations are carried out using several sets of sam-
ples. Each set contains four samples corresponding to the four
nominal strain rates respectively at the temperature range from
30 �C to 70 �C. The critical nominal strains at different nominal
strain rates as a function of temperature from 30 �C to 70 �C are
illustrated in Fig. 11. From Fig. 11, we can observe that as the nom-
inal strain rate increases, the temperature corresponding to the
maximum critical nominal strain increases.

To explain the simulation results in more detail, the time–tem-
perature superposition principle is introduced to re-plot the curves
in Fig. 11. The critical nominal strain as a function of nominal strain
rate (logarithmic form) is illustrated in Fig. 12(a). The reference tem-
perature is selected as Tref = 50 �C and the horizontal shift factor
values can be obtained using the WLF function. The horizontal axis
values after shift can be figured out with the following equation,

lgðtÞ ¼ lgðt0Þ �
C1ðT � Tref Þ
C2 þ T � Tref

ð13Þ

where lgðtÞ is the horizontal axis value after shift, t0 is the initial
nominal strain rate adopted in the simulation, C1 = 10.17 and
C2 = 47.35 �C are the WLF constants, and Tref = 50 �C is the reference
temperature.

After horizontal shift, we have the master curve of critical nom-
inal strain as a function of nominal strain rate at Tref = 50 �C as
shown in Fig. 12(b). If the nominal strain rate is
10�0:8=s ¼ 0:1587=s, the critical nominal strain should be 0.2365;
this case corresponds to the case in which the nominal strain rate
is 0.01/s at a temperature of 45 �C before horizontal shift, and we
can learn that the critical nominal strain at 50 �C is between 0.07
and 0.17 in the giving range of nominal strain rates from
Fig. 12(a). Thus, if the explanation is right, using the time–temper-
ature equivalence principle, we could predict the mechanical
behavior of a wider range of nominal strain rates. To validate the
explanation, we carry out a simulation at a nominal strain rate of
0.1587/s and a temperature of 50 �C. The nominal stress versus
attern transformation included shape memory circle (r–u represent the four steps
e during the cooling and unloading steps).



Fig. 8. Schematic plot of shape memory circle in hexagon-hole periodic cellular structures (r–u represent the four steps in the shape memory circle).

Fig. 9. Nominal strain and nominal stress response as a function of time during the compression inducing pattern transformation included shape memory circle in hexagon-
hole periodic cellular structures (r–u represent the four steps in the shape memory circle).

Fig. 10. Critical nominal strain as a function of temperature in the temperature
range from 30 �C to 100 �C (the nominal strain rate is 0.01/s).

Fig. 11. Critical nominal strain as a function of temperature in the temperature
range from 30 �C to 70 �C at different nominal strain rates.
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nominal strain curves for different loading strain rates and temper-
atures are depicted in Fig. 13. From Fig. 13, it can be seen that the
curve of nominal stress versus nominal strain behavior for nominal
strain rate 0.1587/s at 50 �C (the black solid line) is identical to that
of nominal strain rate 0.01/s at 45 �C (the red dash line), which
means that the explanation is reasonable. These results are consis-
tent with the time–temperature superposition principle and can
serve as a cornerstone in transforming polymer behaviors between
short-time ranges at high temperature and long-time ranges at low
temperature.

3.2. Pattern transformation induced by stress relaxation

According to previous studies, it was typically understood that
the pattern transformation of periodic cellular structures occurs



Fig. 12. (a) Critical nominal strain as a function of nominal strain rate at various temperatures. (b) Critical nominal strain versus nominal strain rate master curve obtained
from horizontal shift of the data from (a); the reference temperature is 50 �C.

Fig. 13. Nominal stress versus nominal strain curves for nominal strain rate
of 0.01/s at 45 �C and nominal strain rate of 0.1587/s at 50 �C.
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only when the compressive nominal strain reaches a critical value.
Nevertheless, from our extensive study of SMP materials, we find
that the stress relaxation can also trigger pattern transformation,
and that pattern transformation is reversible and repeatable. To
study the shape memory behavior of pattern transformation
induced by stress relaxation, the shape memory circle is designed,
as shown in Fig. 14, which includes five steps. Step one is a loading
step, in which the pattern transformation does not occur. In the
loading, the compressive load is applied using the loading method
shown in Fig. 5(a) to a nominal strain of 0.1 at a certain tempera-
ture and a nominal strain rate of 0.005/s. It should be noted that
the critical nominal strain values of the present model are above
0.1 for temperatures in the range of 40 �C to 50 �C under a nominal
strain rate of 0.005/s. This means that pattern transformation does
not occur when the model is compressed in these conditions. Next
Fig. 14. Schematic diagram of relaxation inducing pattern transformation included sha
memory circle respectively).
is the relaxation step, in which pattern transformation appears. In
step two, the temperature and nominal strain are kept the same as
the values at the end of the first step for 300 s. Step three is the
cooling step, in which the transformed pattern is fixed. In step
three, we retain the nominal strain from the end of the second step
and reduce the temperature to 0 �C in 210 s. Step four is the
unloading step. Here, we remove the strain constraint in 1 s and
maintain the low temperature state for another 99 s. Finally, we
perform the reheating step, in which the transformed pattern is
recovered. In step five, we raise the temperature to 70 �C in 300 s.

As shown in Fig. 15, for the hexagon-hole periodic cellular
structure, the boundary conditions are the same as those of the
circle-hole periodic cellular structure, and similar phenomena
can be observed. Therefore, we will analyze only the mechanical
properties of circle-hole periodic cellular structure in the
following.

As mentioned above, for this kind of SMP material periodic cel-
lular structure with a porosity of 0.59, the pattern transformation
induced by stress relaxation after compressed to a nominal strain
of 0.1 appears in the temperature range of 40 �C to 50 �C. Taking
50 �C as an example, the nominal stress and nominal strain
responses during the shape memory circle are illustrated in
Figs. 16 and 17 respectively.

From the nominal stress versus time curve shown in Fig. 16, we
find that during the second step of shape memory cycle there are
two stages, both of which contain two periods: a rapidly falling
period and a slowly declining period. The intersection of the slowly
declining period in the first stage and the rapidly falling period in
the second stage is the pattern transformation critical point, which
is marked with a solid dot in the plot. The nominal stress at this
point is known as critical nominal stress. We can also say that
the pattern transforms when the stress relaxes down to the critical
nominal stress. In studying Fig. 17, it can be seen that there is no
meaning for critical strain, as we retain the strain as a constant
in step two. Therefore, we use critical stress to identify the pattern
transformation critical point for the stress relaxation case.
pe memory circle for circle-hole case (r–v represent the five steps in the shape



Fig. 15. Schematic diagram of relaxation inducing pattern transformation included shape memory circle for hexagonal-hole case (r–v represent the five steps in the shape
memory circle respectively).

Fig. 16. Nominal stress response as a function of time during the relaxation which
induces pattern transformation. The shape memory circle includes five steps which
are depicted by step r–step v.

Fig. 18. Nominal stresses as a function of time during the relaxation step
(relaxation time is 300 s for different temperatures above 45 �C and 3000 s for
temperatures below 45 �C. The zooming part shows the nominal stress versus time
curves for different temperatures above 45 �C).
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To study the temperature influence on the pattern transforma-
tion induced by stress relaxation, we carry out simulations for
every 2 �C increment in the temperature range of 40 �C to 50 �C.
The simulations include two steps, the loading step and the relax-
ation step. These two steps are the same as the first two steps in
the shape memory circle. The nominal stress versus time behavior
curves during the relaxation step are illustrated in Fig. 18. From the
curves, we can see that the pattern transformation occurs only
when the nominal stress relaxes down to a critical value, and that
the values show a minor discrepancy for different temperatures
(the values of critical nominal stress become a little larger in the
Fig. 17. Nominal strain response as a function of time during the relaxation which
induces pattern transformation. The shape memory circle includes five steps which
are depicted by step r–step v.
lower temperature range as the black dash lines show in Fig. 18).
We also can observe that the higher the temperature is, the shorter
time the pattern transformation needs, while the final nominal
stresses tend to retain the same value after pattern transformation.

The auxetic (negative Poisson ratio) behavior of periodic cellu-
lar structures during uniaxial compression has been studied by
Bertoldi et al. (2010) and Hu et al. (2013) for different non SMP
materials. In the present study, we find that this auxetic behavior
also appears in the pattern transformation that occurs during the
stress relaxation process. The Poisson ratio versus time behavior
Fig. 19. Poisson ratio as a function of time during the relaxation step (the relaxation
time is 300 s for temperatures above 45 �C and 3000 s for temperatures below
45 �C).



Fig. 20. Nominal stress as a function of time at 50 �C during the loading and
relaxation steps (the loading nominal strain rate is different for each curve, but the
nominal strains at the end of the loading step are at a same value of 0.1).
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during the relaxation step for different temperatures in the range
of 40 �C to 50 �C is illustrated in Fig. 19. From this figure, we can
observe that the Poisson ratios begin to decrease after pattern
transformation and become negative as time increases.

From this study, we find that different loading speeds can lead
to different nominal stresses for the model at the same nominal
strain, and different nominal stresses take different times to relax
to the critical value for the pattern transformation. To study these
effects, we carry out further simulations. In the following simula-
tions, different nominal strain rates are chosen to apply to the sam-
ples at 50 �C during the loading step but the nominal strains at the
end of the loading are taken as the same value of 0.1. The nominal
stress versus time behavior curves are shown in Fig. 20. In Fig. 20,
the increasing periods of the curves represent the loading steps
and the declining periods represent the relaxation steps.

From Fig. 20, it can be found that the maximum nominal stress
is higher for a faster loading speed at the end of the loading step,
and the time taken for the maximum stress to relax to the critical
value is longer. However, the total time taken for the occurrence of
pattern transformation is shorter for a faster loading speed.
Fig. 21. (a) Nominal stress as a function of time during the relaxation step. (b) Deformed
sample is compressed to a nominal strain of 0.1 at 46 �C in 10 s, while the relaxation
represents a temperature during relaxation of 46 �C, the red line represents the temperatu
the temperature changing to 60 �C at the beginning of the relaxation step and mainta
includes the loading step and relaxation step. (For interpretation of the references to co
Therefore, from these results it can be drawn that we could take
advantage of this phenomenon (rapid loading and relaxation) to
alter the time taken for pattern transformation.

Since the stress relaxation would speed up if we raise the tem-
perature, the pattern transformation should also speed up if the
temperature is raised. To further study the influence of tempera-
ture, we carry out the following simulations. First, the samples
are compressed to a nominal strain of 0.1 at 46 �C and all nominal
strain rates are taken as 0.01/s. Then, the samples are relaxed at
different temperature conditions, i.e., the constant temperature
relaxation (the temperature is kept constant at 46 �C during the
relaxation process), the gradually rising temperature relaxation
(the temperature is increased gradually from 46 �C to 60 �C) and
the high temperature relaxation (the temperature is altered to
60 �C at the beginning of the relaxation step and is maintained at
60 �C during relaxation). The nominal stress history as a function
of time during the relaxation step is shown in Fig. 21(a). For the
constant temperature relaxation case (the black line), the nominal
stress gradually decreases to the critical nominal stress at about
150 s, which means that the pattern transformation takes place
at about 150 s; for the gradually rising temperature relaxation case
(the red line), the nominal stress gradually decreases to the critical
nominal stress at about 60 s, which means that the pattern trans-
formation occurs at about 60 s; and for the high temperature relax-
ation case (the blue line), the nominal stress suddenly declines to
the critical nominal stress, which means that the pattern suddenly
transforms at the beginning of relaxation. The patterns of the sam-
ples for the three relaxation cases at the different times of 25 s,
100 s and 200 s are shown in Fig. 21(b).

4. Concluding remarks

To describe SMP’s intrinsic viscoelasticity and time–tempera-
ture dependent behavior, we employ the generalized Maxwell
model and the WLF equation to perform pattern transformation
simulations. Simulations are carried out on the SMP periodic cellu-
lar structures. This type of structure can display an interesting phe-
nomenon of novel pattern transformation when compressed
beyond a critical value or when in a stress relaxation process.
The pattern transformation is triggered by elastic instability and
thus is reversible and repeatable. For SMP materials, the trans-
formed pattern can be fixed in a cooling process to a temperature
pattern for three different relaxation cases. The loading step is the same where the
steps are different and are illustrated with lines in different colors. The black line
re during relaxation changing gradually from 46 �C to 60 �C, the blue line represents

ining 60 �C during relaxation. The values of time axis shows the total time which
lor in this figure legend, the reader is referred to the web version of this article.)
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below Tg and the fixed pattern can recover to the initial pattern
when reheating to a temperature above Tg. Nominal strain rate
and temperature can influence the pattern transformation process.
The effects of nominal strain rate and temperature on the pattern
transformation process are investigated through finite element
simulation approaches, and we provide a physical explanation
using the time–temperature superposition principle. The study
shows the possibility of predicting the unknown pattern
transformation mechanical behaviors of SMP periodic cellular
structures in various loading conditions with known pattern
transformation mechanical behavior in certain loading condition,
and thus can reduce experimental costs. The study also presents
a method for obtaining a mechanical behavior that is unable to
realize with the usual method. We could take advantage of the fact
that the mechanical behaviors obey the time–temperature
equivalence principle to design suitable experimental and manu-
facturing processes. Although the simulation is based on epoxy
network SMPs, similar phenomena should be observable for other
viscoelastic materials with time–temperature dependent proper-
ties. This work indicates the exciting prospect of a technological
advance by imprinting complex patterns during fabrication
processes using a minimum number of developmental steps and
time, and would inspire people interested in experiments about
the technological advance. We hope this study can contribute to
the research on pattern transformation of SMP periodic cellular
structures, and predict their mechanical behaviors in various
loading conditions.
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Appendix A

The implementation of the mechanical behavior in ABAQUS
input file are listed as below.

⁄Material, name = Polym
⁄Expansion

5.7e�05,50.

2.44e�06,55.

⁄Hyperelastic, neo hooke, moduli = INSTANTANEOUS
393.964, 0.0006452
⁄Viscoelastic, time = PRONY

0.187327
 0.,
 3.031e�05

0.222863
 0.,
 0.0001721

0.257003
 0.,
 0.0009768

0.225274
 0.,
 0.005545

0.0863276
 0.,
 0.03147

0.0144556
 0.,
 0.1787

0.00287336
 0.,
 1.014

0.00103207
 0.,
 5.757

0.000510199
 0.,
 32.68

0.000223371
 0.,
 185.5

6.41683e�05
 0.,
 1053.

1.60548e�05
 0.,
 5977.

⁄Trs

50., 10.17, 47.35
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